Skip to main content
Log in

Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and stabilities of square–hexagon alternant boron nitrides (B x N x , x=12–36) vs their tube isomers containing octagons, decagons and dodecagons have been computed at the B3LYP density functional level of theory with the correlation-consistent cc-pVDZ basis set of Dunning. It is found that octagonal B20N20 and B24N24 tube structures are more stable than their square–hexagon alternants by 18.6 and 2.4 kcal mol−1, respectively, while the square–hexagon alternants of other cages are more stable. Trends in stability as a function of cluster size are discussed.

The octagonal B20N20 and B24N24 tube structures are more stable than their square-hexagon alternant cages

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jensen F (1993) Chem Phys Lett 209:417–422

    Article  CAS  Google Scholar 

  2. Silaghi-Dumitrescu I, Lara-Ochoa F, Bishof P, Haiduc I (1996) J Mol Struct (Theochem) 367:47–54

    Article  CAS  Google Scholar 

  3. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966–967

    Article  CAS  Google Scholar 

  4. Terrones M, Hsu WK, Terrones H, Zhang JP, Ramos S, Hare JP, Castillo R, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1996) Chem Phys Lett 259:568–573

    Article  CAS  Google Scholar 

  5. Loiseau A, Williame F, Demoncy N, Hug G, Pascard H (1996) Phys Rev Lett 76:4733–4740

    Article  Google Scholar 

  6. Saito Y, Maida M (1999) J Phys Chem A 103:1291–1293

    Article  CAS  Google Scholar 

  7. Martin JML, El-Yazal J, Francois JP, Gijbels R (1995) Chem Phys Lett 232:289–294

    Article  CAS  Google Scholar 

  8. Martin JML, El-Yazal J, Francois JP (1996) Chem Phys Lett 248:95–101

    Article  CAS  Google Scholar 

  9. Strout DL (2000) J Phys Chem A 104:3364–3366

    Article  CAS  Google Scholar 

  10. Strout DL (2001) J Phys Chem A 105:261–263

    Article  CAS  Google Scholar 

  11. Wu HS, Xu XH, Zhang FQ, Jiao H (2003) J Phys Chem A 107:6609–6612

    Article  CAS  Google Scholar 

  12. Strout DL (2004) Chem Phys Lett 383:95–98

    Article  CAS  Google Scholar 

  13. Wu HS, Jiao H (2004) Chem Phys Lett 386:369–372 (This relationship has been confirmed further: Zope RR, Baruah T, Pederson MR, Dunlap BI (2004) Chem Phys Lett 394:300–304)

    Google Scholar 

  14. Pokropivny VV, Skorokhod VV, Oleinik GS, Kurdyumov AV, Bartnitskaya TS, Pokropivny AV, Sisonyuk AG, Sceichenko DM (2000) J Solid State Chem 154:214–222

    Article  CAS  Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R.L, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  19. Wu HS, Cui XY, Qin XF, Jiao H (2005) J Mol Struct (Theochem) 714:153–155

    Article  CAS  Google Scholar 

  20. Wu HS, Cui XY, Xu XH (2005) J Mol Struct (Theochem) 717:107–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.L.S. acknowledges the Alabama Supercomputer Authority for a grant of computer time on the Cray SV1 and SGI Altix operated in Huntsville, AL and the National Institutes of Health (NIH/NCMHD 1P20MD000547-01) for support. We also thank the Natural Science Foundation of China (20471034) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Shun Wu.

Additional information

Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HS., Cui, XY., Qin, XF. et al. Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes. J Mol Model 12, 537–542 (2006). https://doi.org/10.1007/s00894-005-0042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0042-6

Keywords

Navigation