Skip to main content
Log in

Effect of Glycerin on Electrical and Thermal Properties of PVA/Copper Sulphate Gel Polymer Electrolytes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Copper-ion conducting gel polymer electrolyte (GPE) systems based on polymer poly(vinyl alcohol) (PVA) and copper sulphate salt doped with glycerin as plasticizer have been synthesized by using solution casting technique. Differential scanning calorimetry (DSC) is used to examine the thermal effect of glycerin on a polymer electrolyte. With the addition of various quantities of glycerin, as a plasticizer in pure PVA and PVA + 20 wt% CuSO4 polymer electrolyte shows a decrease in the values of melting temperature, glass transition temperature and percentage of crystallinity. From TGA curves, it is observed that thermal degradation of the glycerin doped polymer electrolyte is shifted towards lower temperature when compared to pristine PVA and the weight loss of the polymer electrolyte increases with increase of glycerin concentration. From DTG analysis, the temperature of maximum decomposition for PVA is 283.4 °C and it is decreased by the addition of 20 wt% CuSO4 and upon increased concentration of the plasticizer from 1 to 3 mL of glycerin. For pure PVA and PVA + 20 wt% CuSO4, ε′ decreases with increasing glycerin concentration and is lowest at 3 mL glycerin concentration. The maximum ionic conductivity obtained was 9.39 × 10− 4 S/cm for PVA + 20 wt% CuSO4 + 3 mL glycerin gel polymer electrolyte. The above results suggested that, the optimum conducting sample is suitable as separator in rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Rodríguez-Varela, I.L. Alonso-Lemus, O. Savadogo et al., Overview: current trends in green electrochemical energy conversion and storage. J. Mater. Res. 36, 4071–4083 (2021)

    Article  Google Scholar 

  2. C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020)

    Article  CAS  Google Scholar 

  3. S.B.D.S. Filho, L.V.F.D. Oliveira, R.D.S. Oliveira et al., Free-standing solid polymer electrolytes based on elastomeric material and ionic liquids for safer lithium-ion battery applications. Solid State Ion. 379, 115901 (2022)

    Article  Google Scholar 

  4. Sh.M. Abdelcareem, M.K. Jawad, Investigate salts type and concentration on the conductivity of polymer electrolyte. Iraqi J. Phys. 17, 42–50 (2019)

    Article  Google Scholar 

  5. A.A. Kareem, Preparation and characterization of silver self-metallization on polyimide. Polym. Polym. Compos. 30, 1–8 (2022)

    Google Scholar 

  6. Ch. Wen, Y. Chen, Ch. Wang, Ch. Peng, Sh. Lin, K. Huang, Properties of a gel polymer electrolyte based on lithium salt with poly(vinyl butyral). Ionics 24, 1385–1389 (2018)

    Article  CAS  Google Scholar 

  7. N. Boaretto, I. Garbayo, S.V.S. Raj, Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing. J. Power Sour. 502, 229919 (2021)

    Article  CAS  Google Scholar 

  8. M. Hamrahjoo, S. Hadad, E. Dehghani, M.S. Kalajahi, H.R. Mamaqani, Poly(poly[ethylene glycol] methyl ether methacrylate)/graphene oxide nanocomposite gel polymer electrolytes prepared by controlled and conventional radical polymerizations for lithium ion batteries. Int. J. Energy Res. 46, 9114–9127 (2022)

    Article  CAS  Google Scholar 

  9. W.L. Li, J.J. Tang, B.T. Li, Preparation and characterization of composite microporous gel polymer electrolytes containing SiO2(Li+). J. Inorg. Organomet. Polym. 23, 831–838 (2013)

    Article  CAS  Google Scholar 

  10. C.M.S. Prasanna, S.A. Suthanthiraraj, Investigations of zinc ion dissociation in gel polymer electrolytes based on poly(vinyl chloride) and poly(ethyl methacrylate) blend on the addition of two different ceramic nanofillers. J. Inorg. Organomet. Polym. 29, 483–501 (2019)

    Article  Google Scholar 

  11. S. Lorca, F. Santos, A.J.F. Romero, A review of the use of GPEs in zinc-based batteries. A step closer to wearable electronic gadgets and smart textiles. Polymers 12, 2812 (2020)

    Article  CAS  Google Scholar 

  12. A.M. Abdullah, S.B. Aziz, M.A. Brza, Glycerol as an efficient plasticizer to increase the DC conductivity and improve the ion transport parameters in biopolymer-based electrolytes: XRD, FTIR and EIS studies. Arab. J. Chem. 15, 103791 (2022)

    Article  CAS  Google Scholar 

  13. S.B. Aziz, O.G. Abdullah, S.R. Saeed, H.M. Ahmed, Electrical and dielectric properties of copper ion conducting solid polymer electrolytes based on chitosan: CBH model for ion transport mechanism. Int. J. Electrochem. Sci. 13, 3812–3826 (2018)

    Article  CAS  Google Scholar 

  14. F. Ye, K. Liao, R. Ran, Z. Shao, Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review. Energy Fuels 34, 9189–9207 (2020)

    Article  CAS  Google Scholar 

  15. K. Perera, M.A.K.L. Dissanayake, P.W.S.K. Bandaranayake, Copper-ion conducting solid-polymer electrolytes based on polyacrylonitrile (PAN). Electrochim. Acta 45, 1361–1369 (2000)

    Article  CAS  Google Scholar 

  16. M. Mohsin, A. Hossin, Y. Haik, Thermal and mechanical properties of poly(vinyl alcohol) plasticized with glycerol. J. Appl. Polym. Sci. 122, 3102–3109 (2011)

    Article  CAS  Google Scholar 

  17. S.L. Agrawal, A. Awadhia, DSC and conductivity studies on PVA based proton conducting gel electrolytes. Bull. Mater. Sci. 27, 523–527 (2004)

    Article  CAS  Google Scholar 

  18. G. Ayala, A. Agudelo, R. Vargas, Effect of glycerol on the electrical properties and phase behavior of cassava starch biopolymers. Dyna 79, 138–147 (2012)

    Google Scholar 

  19. J. Tarique, S.M. Sapuan, A. Khalina, Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 11, 1–17 (2021)

    Article  Google Scholar 

  20. B.A. Abdulkadir, J.O. Dennis, M.F. Bin, A. Shukur, M.M. Elsayed, F. Usman, Preparation and characterization of gel polymer electrolyte based on PVA-K2CO3. Polym. Plast. Technol. 59, 1679–1697 (2020)

    CAS  Google Scholar 

  21. S. Chaurasia, M. Singh, M.K. Singh, P. Kumar, A.L. Saroj, Impact of ionic liquid incorporation on ionic transport and dielectric properties of PEO-lithium salt-based quasi-solid-state electrolytes: role of ion-pairing. J. Mater. Sci. Mater. Electron. 33, 1641–1656 (2022)

    Article  CAS  Google Scholar 

  22. A. Arya, A.L. Sharma, Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J. Mater. Sci. Mater Electron. 29, 17903–17920 (2018)

    Article  CAS  Google Scholar 

  23. M.F.Z. Kadir, S.R. Majid, A.K. Arof, Plasticized chitosan-PVA blend polymer electrolyte-based proton battery. Electrochim. Acta 55, 1475–1482 (2010)

    Article  CAS  Google Scholar 

  24. R.I. Mattos, C.E. Tambelli, E. Raphael, I.D.A. Silva, C.J. Magon, J.P. Donoso, A. Pawlicka, Proton mobility and copper coordination in polysaccharide and gelatin-based bioblends and polyblends. Cellulose 21, 2247–2259 (2014)

    Article  CAS  Google Scholar 

  25. Sh.M. Abdalcareem, M.K. Jawad, Effect of cation size on electrochemical properties of polymer electrolyte. Iraqi J. Phys. 17, 76–84 (2019)

    Article  Google Scholar 

  26. G. Hirankumar, N. Mehta, Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4, based electrolytes. Heliyon 4, 1–26 (2018)

    Article  Google Scholar 

  27. E.A. Swady, M.K. Jawad, Study FTIR and AC conductivity of nanocomposite electrolytes. Iraqi J. Phys. 19, 15–22 (2021)

    Article  Google Scholar 

  28. A. Pawlicka, M. Danczuk, W. Wieczorek, E.Z. Monikowska, Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. J. Phys. Chem. A 112, 8888–8895 (2008)

    Article  CAS  Google Scholar 

  29. R.J. Abdulnabi, A.A. Kareem, Fabrication and characterization of high-performance crosslinked PVA/ PMDA doped with H2SO4. Iraqi J. Sci. 63, 2006–2016 (2022)

    Article  Google Scholar 

  30. N.J.H. Almashhadani, UV-Exposure effect on the mechanical properties of PEO/PVA blends. Iraqi J. Sci. 62, 1879–1892 (2021)

    Article  Google Scholar 

  31. H.K. Rasheed, A.A. Kareem, Effect of multiwalled carbon nanotube reinforcement on the opto-electronic properties of polyaniline/c-Si heterojunction. J. Opt. Commun. 42, 25–29 (2021)

    Article  Google Scholar 

  32. N.M. Ali, A.A. Kareem, Ionic conductivity enhancement for PVA/ 20 wt% CuSO4 gel polymer electrolyte by using glycerin. Chalcogenide Lett. 19, 217–225 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aseel A. Kareem.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N.M., Kareem, A.A. & Polu, A.R. Effect of Glycerin on Electrical and Thermal Properties of PVA/Copper Sulphate Gel Polymer Electrolytes. J Inorg Organomet Polym 32, 4070–4076 (2022). https://doi.org/10.1007/s10904-022-02417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02417-7

Keywords

Navigation