Skip to main content
Log in

Magnesium (II) bis(trifluoromethanesulfonimide) doped PVdC-co-AN gel polymer electrolytes for rechargeable batteries

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Gel polymer electrolytes (GPEs) containing poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) as the polymer host and plastic crystal succinonitrile (SN) as plasticizer were prepared with varied concentrations of 5 to 30 wt.% of magnesium (II) bis(trifluoromethanesulfonimide) Mg(TFSI)2 salt. The highest room temperature ionic conductivity of 1.61 × 10−6 S cm−1 was obtained from the sample containing 20 wt.% of Mg(TFSI)2. The conductivity temperature dependence studies of the GPE system was found to obey the VTF relation. To study the interaction among the constituents in the GPEs as well as to confirm the complexation between them, Fourier transform infrared spectroscopy. (FTIR) was carried out. The analysis of FTIR spectra was further investigated by deconvolution of the FTIR spectra to prove the dependability of ionic conductivity with the presence of free ions, ion pairs, and ion aggregates in the GPEs. The amorphous nature of the GPEs were confirmed by X-ray diffraction (XRD) analysis while DSC studies revealed the relationship between the thermal stability of GPEs and ionic conductivity. The electrochemical study was also performed by linear sweep voltammetry (LSV) to verify the maximum withstand voltage of the electrolyte to be used in magnesium battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li X, Zhang Z, Li S et al (2016) Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries. J Power Sources 307:678–683

    CAS  Google Scholar 

  2. Tang X, Muchakayala R, Song S et al (2016) Journal of Industrial and Engineering Chemistry A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications. J Ind Eng Chem 37:67–74

    CAS  Google Scholar 

  3. Cheng H, Zhu C, Huang B et al (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52:5789–5794

    CAS  Google Scholar 

  4. Li W, Pang Y, Liu J et al (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7:23494–23501

    CAS  Google Scholar 

  5. Mohan VM, Raja V, Bhargav PB et al (2007) Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J Polym Res 14:283–290

    CAS  Google Scholar 

  6. Majid SR, Ariffin NE, Arof AK et al (2011) PMMA–LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 208:36–42

    Google Scholar 

  7. Othman L, Isa KB, Osman Z, Yahya R (2013) Ionic Conductivity , Morphology and Transport Number of Lithium Ions in PMMA Based Gel Polymer Electrolytes. 335:4028

  8. Osman Z, Samin SM, Othman L, Md Isa KB (2012) Ionic transport in PMMA-NaCF3SO3 gel polymer electrolyte. Adv Mater Res 545:259–263

    Google Scholar 

  9. Isa KB, Osman Z, Arof AK et al (2014) Lithium ion conduction and ion – polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid State Ionics 268:288–293

    CAS  Google Scholar 

  10. Karuppasamy K, Reddy PA, Srinivas G et al (2016) Electrochemical and cycling performances of novel nonafluorobutanesulfonate (nonaflate) ionic liquid based ternary gel polymer electrolyte membranes for rechargeable lithium ion batteries. J Memb Sci 514:350–357

    CAS  Google Scholar 

  11. Zalewska A, Dumińska J, Langwald N et al (2014) Preparation and performance of gel polymer electrolytes doped with ionic liquids and surface-modified inorganic fillers. Electrochim Acta 121:337–344

    CAS  Google Scholar 

  12. Hofmann A, Schulz M, Hanemann T (2013) Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim Acta 89:823–831

    CAS  Google Scholar 

  13. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    CAS  Google Scholar 

  14. Chong WG, Osman Z (2014) The effect of carbonate-phthalate plasticizers on structural, morphological and electrical properties of polyacrylonitrile-based solid polymer electrolytes. J Polym Res 21:381

    Google Scholar 

  15. Yang C-M, Kim H-S, Na B-K et al (2006) Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. J Power Sources 156:574–580

    CAS  Google Scholar 

  16. Lu Q, Fang J, Yang J et al (2013) A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J Memb Sci 425–426:105–112

    Google Scholar 

  17. Pu W, He X, Wang L et al (2006) Preparation of P(AN–MMA) microporous membrane for Li-ion batteries by phase inversion. J Memb Sci 280:6–9

    CAS  Google Scholar 

  18. Taib NU, Hayati N (2014) Plastic crystal – solid biopolymer electrolytes for rechargeable lithium batteries. J Memb Sci 468:149–154

    CAS  Google Scholar 

  19. Aslan A, Gölcük K, Bozkurt A (2012) Nanocomposite polymer electrolytes membranes based on poly(vinylphosphonic acid)/SiO2. J Polym Res 19:22

    Google Scholar 

  20. Gupta RK, Rhee H-W (2012) Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I2 redox-couple solid polymer electrolyte. Electrochim Acta 76:159–164

    CAS  Google Scholar 

  21. Patel M, Chandrappa KG, Bhattacharyya AJ (2008) Increasing ionic conductivity and mechanical strength of a plastic electrolyte by inclusion of a polymer. Electrochim Acta 54:209–215

    CAS  Google Scholar 

  22. Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes 47:3583–3590

  23. Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964

    Google Scholar 

  24. Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196:1358–1364

    CAS  Google Scholar 

  25. Saha P, Kanchan M, Velikokhatnyi OI (2014) Progress in materials science rechargeable magnesium battery : current status and key challenges for the future. Prog Mater Sci 66:1–86

    CAS  Google Scholar 

  26. Oh J, Ko J, Kim D (2004) Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. Electrochim Acta 50:903–906

    CAS  Google Scholar 

  27. Kumar GG, Munichandraiah N (2000) Solid-state mg/MnO2 cell employing a gel polymer electrolyte of magnesium triflate. J Power Sources 91:157–160

    CAS  Google Scholar 

  28. Shterenberg I, Salama M, Yoo HD et al (2015) Evaluation of (CF3SO2)2N- (TFSI) based electrolyte solutions for mg batteries. J Electrochem Soc 162:A7118–A7128

    CAS  Google Scholar 

  29. Cheng Y, Stolley RM, Han KS et al (2015) Highly active electrolytes for rechargeable mg batteries based on a [Mg2(μ-cl)2]2+ cation complex in dimethoxyethane. Phys Chem Chem Phys 17:13307–13314

    CAS  PubMed  Google Scholar 

  30. Ha SY, Lee YW, Woo SW, Koo B, Kim JS, Cho J, Lee KT, Choi NS (2014) Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6:4063–4073

    CAS  PubMed  Google Scholar 

  31. Moniha V, Alagar M, Selvasekarapandian S et al (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434

    CAS  Google Scholar 

  32. Johan MR, Shy OH, Ibrahim S et al (2011) Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO–LiCF3SO3 solid polymer electrolyte. Solid State Ionics 196:41–47

    CAS  Google Scholar 

  33. Imperiyka M, Ahmad A, Hanifah SA et al (2014) Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application. Int J Hydrog Energy 39:3018–3024

    CAS  Google Scholar 

  34. Pradhan DK, Karan NK, Thomas R, Katiyar RS (2014) Coupling of conductivity to the relaxation process in polymer electrolytes. Mater Chem Phys 147:1016–1021

    CAS  Google Scholar 

  35. Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372–5376

    CAS  Google Scholar 

  36. Druger SD, Ratner MA, Nitzan A (1985) Generalized hopping model for frequency-dependent transport in a dynamically disordered medium, with applications to polymer solid electrolytes. Phys Rev B 31:3939–3947

    CAS  Google Scholar 

  37. Premila R, Subbu C, Rajendran S, Selva Kumar K (2017) Experimental investigation of nano filler TiO2 doped composite polymer electrolytes for lithium ion batteries. Appl Surf Sci 449:426–434

    Google Scholar 

  38. Isa KB, Osman Z, Arof AK, et al (2014) Lithium ion conduction and ion – polymer interaction in PVdF-HFP based gel polymer electrolytes. Solid state Ionics 3–8

  39. Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124

    CAS  Google Scholar 

  40. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634

    CAS  Google Scholar 

  41. Shi FG, Nieh TG, Okuyama K (2000) Electrical conduction in solid polymer electrolytes: temperature dependence mechanism. Microelectron J 31:261–265

    Google Scholar 

  42. Kumar R, Rhee H (2012) Electrochimica Acta Effect of succinonitrile on electrical , structural , optical , and thermal properties of [ poly ( ethylene oxide ) -succinonitrile ]/ LiI – I2 redox-couple solid polymer electrolyte. Electrochim Acta 76:159–164

    Google Scholar 

  43. Rajendran S, Babu RS, Sivakumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Memb Sci 315:67–73

    CAS  Google Scholar 

  44. Shanthi M, Mathew CM, Ulaganathan M, Rajendran S (2013) FT-IR and DSC studies of poly(vinylidene chloride-co-acrylonitrile) complexed with LiBF4. Spectrochim Acta - Part A Mol Biomol Spectrosc 109:105–109

    CAS  Google Scholar 

  45. Das S, Prathapa SJ, Menezes P V et al (2009) Study of ion transport in Lithium perchlorate-Succinonitrile plastic crystalline electrolyte via ionic conductivity and in situ Cryo-crystallography. 5025–5031

  46. Jeong S-K, Jo Y-K, Jo N-J (2006) Decoupled ion conduction mechanism of poly(vinyl alcohol) based mg-conducting solid polymer electrolyte. Electrochim Acta 52:1549–1555

    CAS  Google Scholar 

  47. Sim LN, Yahya R, Arof AK (2016) Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide and urea as deep eutectic solvent. Opt Mater (Amst) 56:140–144

    CAS  Google Scholar 

  48. Nakano Y, Tsutsumi H (2014) Ionic conductive properties of solid polymer electrolyte based on poly(oxetane) with branched side chains of terminal nitrile groups. Solid State Ionics 262:774–777

    CAS  Google Scholar 

  49. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867

    CAS  PubMed  Google Scholar 

  50. Gupta H, Shalu BL et al (2017) Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes. Solid State Ionics 309:192–199

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Education Malaysia and University of Malaya for the scholarship and grants, FP044-2017A and PG038-2015A awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Osman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hambali, D., Osman, Z., Othman, L. et al. Magnesium (II) bis(trifluoromethanesulfonimide) doped PVdC-co-AN gel polymer electrolytes for rechargeable batteries. J Polym Res 27, 159 (2020). https://doi.org/10.1007/s10965-020-02083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02083-8

Keywords

Navigation