Skip to main content
Log in

Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This review based on Zn-based MOF is summarized on new insights for targeted drug delivery of medicinal compounds and developed for medicinal applications. The stability of the MOF may be controlled by functionalization and the proper structure and composition choices. Thus, one of the most crucial factors to consider when it comes to bio-applications of MOF is the management of their particle size distribution and the alteration of their surface. Recent research was shown that Zn-based MOF can be used as a viable delivery system for non-toxic/biocompatible medicines and therapeutic agents in biological and medical applications. The toxicity, biocompatibility, stability, and recently reported production techniques for MOF’s zinc-based building block as a possible platform with biological applications were explored and presented in this review study to offer ideal venues for further research. The factors including The surface area and pore volumes, functional groups, and synthetic methods for adsorption and desorption of drugs were studied. Antibacterial and anticancer activities of Zn-based MOF and their mechanisms were investigated. At last, the adsorption and release mechanism of drugs was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from [36] with permission from the American Chemical Society

Fig. 2

Reprinted from [40] with permission from the Elsevier

Fig. 3
Fig. 4

Reprinted from [46] with permission from the Elsevier

Fig. 5

Reprinted from [51] with permission from the Royal Society of chemistry

Fig. 6

Reprinted from [54] with permission from the Elsevier

Fig. 7

Reprinted from [56] with permission from the Elsevier

Fig. 8

Reprinted from [60] with permission from the Royal Society of chemistry

Fig. 9

Reprinted from [67] with permission from the Elsevier

Fig. 10

Reprinted from [68] with permission from the Royal Society of chemistry

Fig. 11

Reprinted from [74] with permission from the Elsevier

Fig. 12
Fig. 13

Reprinted from [76] with permission from the springer nature

Fig. 14
Fig. 15

Reprinted from [24] with permission from the Royal Society of chemistry

Fig. 16

Reprinted from [86] with permission from the Royal Society of chemistry

Fig. 17

Reprinted from [86] with permission from the Royal Society of chemistry

Fig. 18

Reprinted from [72] with permission from the Royal Society of chemistry

Fig. 19

Reprinted from [99] with permission from the Royal Society of chemistry

Fig. 20

Reprinted from [100] with permission from the American Chemical Society

Fig. 21

Similar content being viewed by others

References

  1. H. Mostaanzadeh, M. Shahmohammadi, A. Ehsani, M. Moharramnejad, E. Honarmand, “Green-synthesized Zn-BTC metal–organic frameworks as a highly efficient material to improving electrochemical pseudocapacitance performance of P-type conductive polymer” Journal of Materials Science: Materials in Electronics, pp. 1–9, 2021

  2. M. Davoodi, F. Davar, M.R. Rezayat, M.T. Jafari, A.E. Shalan, Cobalt metal–organic framework-based ZIF-67 for the trace determination of herbicide molinate by ion mobility spectrometry: investigation of different morphologies. RSC Adv. 11(5), 2643–2655 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Majedi, F. DAVAR, A. Abbasi, “Metal-organic framework materials as nano photocatalyst” 2016

  4. K. Kannan et al, “Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids”. Mater. Sci. Energy Technol. 3, 853–861 (2020)

    CAS  Google Scholar 

  5. S. Rostamnia, M. Jafari, Metal-organic framework of amine-MIL‐53 (Al) as active and reusable liquid‐phase reaction inductor for multicomponent condensation of Ugi‐type reactions. Appl. Organomet. Chem. 31(4), e3584 (2017)

    Article  Google Scholar 

  6. S. Rostamnia, H. Alamgholiloo, M. Jafari, Ethylene diamine post-synthesis modification on open metal site Cr‐MOF to access efficient bifunctional catalyst for the Hantzsch condensation reaction. Appl. Organomet. Chem. 32(8), e4370 (2018)

    Article  Google Scholar 

  7. H. Alamgholiloo et al, “Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: Synergic boost to hydrogen production from formic acid”. J. Colloid Interface Sci. 567, 126–135 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. R. Abazari et al, “Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer”. Inorg. Chem. 57(21), 13364–13379 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. H. Sepehrmansourie, M. Zarei, M.A. Zolfigol, S. Babaee, S. Rostamnia, Application of novel nanomagnetic metal-organic frameworks as a catalyst for the synthesis of new pyridines and 1, 4-dihydropyridines via a cooperative vinylogous anomeric based oxidation. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

  10. H. Alamgholiloo, N.N. Pesyan, R. Mohammadi, S. Rostamnia, M. Shokouhimehr, Synergistic advanced oxidation process for the fast degradation of ciprofloxacin antibiotics using a GO/CuMOF-magnetic ternary nanocomposite. J. Environ. Chem. Eng. 9(4), 105486 (2021)

    Article  CAS  Google Scholar 

  11. V. Agostoni et al, “Towards an Improved anti-HIV Activity of NRTI via Metal–Organic Frameworks Nanoparticles”. Adv. Healthc. Mater. 2(12), 1630–1637 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. S. Bahrani, S.A. Hashemi, S.M. Mousavi, R. Azhdari, “Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metab. Rev. 51(3), 356–377 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. Q. Lin et al, High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy 22, 539–547 (2016)

    Article  CAS  Google Scholar 

  14. Y.T. Liao, S. Dutta, C.H. Chien et al., Synthesis of Mixed-Ligand Zeolitic Imidazolate Framework (ZIF-8-90) for CO2 Adsorption. J. Inorg. Organomet. Polym. 25, 251–258 (2015)

    Article  CAS  Google Scholar 

  15. T.J. Hubin et al, “Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands”. Bioorg. Med. Chem. 22(13), 3239–3244 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Sangeetha, G. Krishnamurthy, S. Foro et al., Energy Storage Applications of Cobalt and Manganese Metal–Organic Frameworks. J. Inorg. Organomet. Polym. 30, 4792–4802 (2020)

    Article  CAS  Google Scholar 

  17. T.V. Slenters et al., “Of chains and rings: Synthetic strategies and theoretical investigations for tuning the structure of silver coordination compounds and their applications,“ Materials, vol. 3, no. 5, pp. 3407–3429, 2010

  18. S.R. Miller et al, A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chem. Commun. 49(71), 7773–7775 (2013)

    Article  CAS  Google Scholar 

  19. E. Alvarez et al., “A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect?,“ CrystEngComm, vol. 15, no. 46, pp. 9899–9905, 2013

  20. I. Jeon et al, Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15(10), 6665–6671 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. S. Rostamnia, H. Alamgholiloo, Synthesis and catalytic application of mixed valence iron (FeII/FeIII)-based OMS-MIL-100 (Fe) as an efficient green catalyst for the aza-Michael reaction. Catal. Lett. 148(9), 2918–2928 (2018)

    Article  CAS  Google Scholar 

  22. H. Mirzaei, M. Darroudi, “Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 43(1), 907–914 (2017)

    Article  CAS  Google Scholar 

  23. S. Gai et al, “Highly stable zinc-based metal–organic frameworks and corresponding flexible composites for removal and detection of antibiotics in water”. ACS Appl. Mater. Interfaces 12(7), 8650–8662 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. K. Wang, Y. Yin, C. Li, Z. Geng, Z. Wang, “Facile synthesis of zinc (II)-carboxylate coordination polymer particles and their luminescent, biocompatible and antibacterial properties,“ CrystEngComm, vol. 13, no. 20, pp. 6231–6236, 2011

  25. T. Taghipour, G. Karimipour, M. Ghaedi, A. Asfaram, “Mild synthesis of a Zn (II) metal organic polymer and its hybrid with activated carbon: Application as antibacterial agent and in water treatment by using sonochemistry: Optimization, kinetic and isotherm study. Ultrason. Sonochem. 41, 389–396 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. A. Nagaraja, M.D. Jalageri, Y.M. Puttaiahgowda, K.R. Reddy, A.V. Raghu, “A review on various maleic anhydride antimicrobial polymers”. J. Microbiol. Methods 163, 105650 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. D.S. Donawade, A. Raghu, U. Muddapur, G.S. Gadaginamath, “Chemoselective reaction of benz (g) indole based bisheterocycle dicarboxylate towards hydrazine hydrate: Synthesis and antimicrobial activity of new triheterocycles-5-pyrrolylaminocarbonyl/mercaptooxadiazolyl/4-allyl-5-mercaptotriazolylmethoxy-1-furfuryl-2-methylbenz (g) indoles,” 2005

  28. S. Feng et al, “A nanoscale Nd-based metal-organic framework electrochemical sensor for rapid detection of Rhodamine B”. J. Solid State Chem. 303, 122508 (2021)

    Article  CAS  Google Scholar 

  29. S. Bahrani, M. Ghaedi, A. Ostovan, H. Javadian, M.J.K. Mansoorkhani, T. Taghipour, “A facile and selective approach for enrichment of l-cysteine in human plasma sample based on zinc organic polymer: Optimization by response surface methodology”. J. Pharm. Biomed. Anal. 149, 166–171 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. L.-G. Qiu, Z.-Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, “Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines” Chemical communications, no. 31, pp. 3642–3644, 2008

  31. J. Ye et al, “Highly Selective Detection of 2, 4, 6-Trinitrophenol and Cu2 + Ions Based on a Fluorescent Cadmium–Pamoate Metal–Organic Framework”. Chemistry–A Eur. J. 21(5), 2029–2037 (2015)

    Article  CAS  Google Scholar 

  32. M.H. Yap, K.L. Fow, G.Z. Chen, Synthesis and applications of MOF-derived porous nanostructures. Green. Energy & Environment 2(3), 218–245 (2017)

    Article  Google Scholar 

  33. M. Park, J.-S. Park, I.K. Han, J.Y. Oh, High-performance flexible and air-stable perovskite solar cells with a large active area based on poly (3-hexylthiophene) nanofibrils. J. Mater. Chem. A 4(29), 11307–11316 (2016)

    Article  CAS  Google Scholar 

  34. J. Feng et al, “E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells”. Nano Energy 36, 1–8 (2017)

    Article  Google Scholar 

  35. M. Eddaoudi et al., “Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage,“ Science, vol. 295, no. 5554, pp. 469–472, 2002

  36. S. Keskin, D.S. Sholl, “Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models,“ Langmuir, vol. 25, no. 19, pp. 11786–11795, 2009

  37. A. Pichon, A. Lazuen-Garay, S.L. James, “Solvent-free synthesis of a microporous metal–organic framework,“ CrystEngComm, vol. 8, no. 3, pp. 211–214, 2006

  38. J. Ha, H. Kim, H. Lee, K.-G. Lim, T.-W. Lee, S. Yoo, Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol. Energy Mater. Sol. Cells 161, 338–346 (2017)

    Article  CAS  Google Scholar 

  39. O. Abuzalat, D. Wong, M. Elsayed, S. Park, S. Kim, Sonochemical fabrication of Cu (II) and Zn (II) metal-organic framework films on metal substrates. Ultrason. Sonochem. 45, 180–188 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Z.-Q. Li, L.-G. Qiu, W. Wang, T. Xu, Y. Wu, X. Jiang, Fabrication of nanosheets of a fluorescent metal–organic framework [Zn (BDC)(H2O)] n (BDC = 1, 4-benzenedicarboxylate): Ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun. 11(11), 1375–1377 (2008)

    Article  CAS  Google Scholar 

  41. M. Ranjbar, A. Pardakhty, A. Amanatfard, A. Asadipour, “Efficient drug delivery of β-estradiol encapsulated in Zn-metal–organic framework nanostructures by microwave-assisted coprecipitation method,“ Drug design, development and therapy, vol. 12, p. 2635, 2018

  42. S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, H. Park, “Development of annealing-free, solution-processable inverted organic solar cells with n-doped graphene electrodes using zinc oxide nanoparticles. Nano Lett. 18(2), 1337–1343 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. Y. Ming, N. Kumar, D.J. Siegel, “Water adsorption and insertion in MOF-5”. ACS omega 2(8), 4921–4928 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Zhang et al, Toward all room-temperature, solution‐processed, high‐performance planar perovskite solar cells: a new scheme of pyridine‐promoted perovskite formation. Adv. Mater. 29(13), 1604695 (2017)

    Article  Google Scholar 

  45. D. Bahr et al, “Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals”. Phys. Rev. B 76(18), 184106 (2007)

    Article  Google Scholar 

  46. Z. Chen et al, “Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: suppressed hysteresis and flexible photovoltaic application”. J. Power Sources 351, 123–129 (2017)

    Article  CAS  Google Scholar 

  47. S. Beg et al, “Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications”. Drug Discovery Today 22(4), 625–637 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. M.X. Wu, Y.W. Yang, “Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29(23), 1606134 (2017)

    Article  Google Scholar 

  49. P. Horcajada et al, “Metal–organic frameworks in biomedicine”. Chem. Rev. 112(2), 1232–1268 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. S. Bahrani, M. Ghaedi, K. Dashtian, A. Ostovan, M.J.K. Mansoorkhani, A. Salehi, “MOF-5 (Zn)-Fe2O4 nanocomposite based magnetic solid-phase microextraction followed by HPLC-UV for efficient enrichment of colchicine in root of colchicium extracts and plasma samples”. J. Chromatogr. B 1067, 45–52 (2017)

    Article  CAS  Google Scholar 

  51. R. Bian, T. Wang, L. Zhang, L. Li, C. Wang, “A combination of tri-modal cancer imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles”. Biomaterials Sci. 3(9), 1270–1278 (2015)

    Article  CAS  Google Scholar 

  52. X. Yang, Q. Tang, Y. Jiang, M. Zhang, M. Wang, L. Mao, Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 141(9), 3782–3786 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46(11), 3108–3133 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. T.A. Vahed, M.R. Naimi-Jamal, L. Panahi, “Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release”. J. Drug Deliv. Sci. Technol. 49, 570–576 (2019)

    Article  Google Scholar 

  55. H. Wang, T. Li, J. Li, W. Tong, C. Gao, One-pot synthesis of poly (ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. Colloids Surf., A 568, 224–230 (2019)

    Article  CAS  Google Scholar 

  56. N. Zhou et al, “Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: a highly sensitive and selective platform for detecting cancer markers”. Biosens. Bioelectron. 123, 51–58 (2019)

    Article  CAS  PubMed  Google Scholar 

  57. A. Lan et al, “A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives”. Angew. Chem. 121(13), 2370–2374 (2009)

    Article  Google Scholar 

  58. A.C. McKinlay et al, “BioMOFs: metal–organic frameworks for biological and medical applications”. Angew. Chem. Int. Ed. 49(36), 6260–6266 (2010)

    Article  CAS  Google Scholar 

  59. G. Kumar, A. Kant, M. Kumar, D.T. Masram, “Synthesis, characterizations and kinetic study of metal organic framework nanocomposite excipient used as extended release delivery vehicle for an antibiotic drug”. Inorg. Chim. Acta 496, 119036 (2019)

    Article  CAS  Google Scholar 

  60. J.H. Kim, C.-C. Chueh, S.T. Williams, A.K.-Y. Jen, “Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells,“ Nanoscale, vol. 7, no. 41, pp. 17343–17349, 2015

  61. I. Imaz, M. Rubio-Martínez, J. An, I. Sole-Font, N.L. Rosi, D. Maspoch, “Metal–biomolecule frameworks (MBioFs),“ Chemical communications, vol. 47, no. 26, pp. 7287–7302, 2011

  62. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, “Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 118(36), 6120–6124 (2006)

    Article  Google Scholar 

  63. S. Lawson, K. Newport, K. Schueddig, A.A. Rownaghi, F. Rezaei, Optimizing ibuprofen concentration for rapid pharmacokinetics on biocompatible zinc-based MOF-74 and UTSA-74. Mater. Sci. Engineering: C 117, 111336 (2020)

    Article  CAS  Google Scholar 

  64. X. Zhang, S. Li, S. Chen, F. Feng, J. Bai, J. Li, Ammoniated MOF-74 (Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A. Ecotoxicol. Environ. Saf. 187, 109821 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. A.D. Burrows et al, Incorporation by coordination and release of the iron chelator drug deferiprone from zinc-based metal–organic frameworks. Chem. Commun. 49(96), 11260–11262 (2013)

    Article  CAS  Google Scholar 

  66. R.W.Y. Sun et al, “Dinuclear gold (I) pyrrolidinedithiocarbamato complex: cytotoxic and antimigratory activities on cancer cells and the use of metal–organic framework”. Chemistry–A Eur. J. 21(51), 18534–18538 (2015)

    Article  CAS  Google Scholar 

  67. N. Motakef-Kazemi, S.A. Shojaosadati, A. Morsali, In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mater. 186, 73–79 (2014)

    Article  CAS  Google Scholar 

  68. J.-S. Qin et al, “N-rich zeolite-like metal–organic framework with sodalite topology: high CO 2 uptake, selective gas adsorption and efficient drug delivery”. Chem. Sci. 3(6), 2114–2118 (2012)

    Article  CAS  Google Scholar 

  69. K. Dong, Y. Zhang, L. Zhang, Z. Wang, J. Ren, X. Qu, “Facile preparation of metal – organic frameworks-based hydrophobic anticancer drug delivery nanoplatform for targeted and enhanced cancer treatment,“ Talanta, vol. 194, pp. 703–708, 2019

  70. Z. Karimzadeh, S. Javanbakht, H. Namazi, Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. BioImpacts: BI 9(1), 5 (2019)

    Article  CAS  PubMed  Google Scholar 

  71. J. An, S.J. Geib, N.L. Rosi, Cation-triggered drug release from a porous zinc – adeninate metal – organic framework. J. Am. Chem. Soc. 131(24), 8376–8377 (2009)

    Article  CAS  PubMed  Google Scholar 

  72. A.R. Chowdhuri, D. Bhattacharya, S.K. Sahu, Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 45(7), 2963–2973 (2016)

    Article  Google Scholar 

  73. T.T.T. Huong, P.N. Thanh, “Metal–organic frameworks: state-of-the-art material for gas capture and storage” VNU Journal of Science: Mathematics-Physics, vol. 32, no. 1, 2016

  74. D.-Y. Ma et al, “Drug delivery and selective CO2 adsorption of a bio-based porous zinc-organic framework from 2, 5-furandicarboxylate ligand”. Inorg. Chem. Commun. 86, 128–132 (2017)

    Article  CAS  Google Scholar 

  75. G. Lucarelli, F. Di Giacomo, V. Zardetto, M. Creatore, T.M. Brown, Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination. Nano Res. 10(6), 2130–2145 (2017)

    Article  CAS  Google Scholar 

  76. B.-H. Song, X. Ding, Z.-F. Zhang, G.-F. An, Efficient drug delivery of 5-fluorouracil by a biocompatible Zn-metal–organic framework nanostructure and anti-liver cancer activity study. J. Iran. Chem. Soc. 16(2), 333–340 (2019)

    Article  CAS  Google Scholar 

  77. W. Lin, Q. Hu, K. Jiang, Y. Cui, Y. Yang, G. Qian, “A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release”. Microporous Mesoporous Mater. 249, 55–60 (2017)

    Article  CAS  Google Scholar 

  78. Y. Wang, J. Yang, Y.Y. Liu, J.F. Ma, Controllable syntheses of porous metal–organic frameworks: Encapsulation of LnIII cations for tunable luminescence and small drug molecules for efficient delivery. Chemistry–A Eur. J. 19(43), 14591–14599 (2013)

    Article  CAS  Google Scholar 

  79. C.Y. Sun et al, “Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery”. Adv. Mater. 23(47), 5629–5632 (2011)

    Article  CAS  PubMed  Google Scholar 

  80. S. Rojas et al, Nanoscaled zinc pyrazolate metal–organic frameworks as drug-delivery systems. Inorg. Chem. 55(5), 2650–2663 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. K. Xing et al, “Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal–Organic framework”. ACS Appl. Mater. Interfaces 10(26), 22746–22756 (2018)

    Article  CAS  PubMed  Google Scholar 

  82. Y. Qi et al, “In-situ synthesis of metal nanoparticles@ metal – organic frameworks: Highly effective catalytic performance and synergistic antimicrobial activity”. J. Hazard. Mater. 387, 121687 (2020)

    Article  CAS  PubMed  Google Scholar 

  83. C. Tamames-Tabar et al., “A Zn azelate MOF: combining antibacterial effect,“ CrystEngComm, vol. 17, no. 2, pp. 456–462, 2015

  84. Y. Zhang et al, “Fully solution-processed TCO‐free semitransparent perovskite solar cells for tandem and flexible applications”. Adv. Energy Mater. 8(1), 1701569 (2018)

    Article  Google Scholar 

  85. G.N. Lucena et al, “Zn-based porous coordination solid as diclofenac sodium carrier”. J. Solid State Chem. 260, 67–72 (2018)

    Article  CAS  Google Scholar 

  86. H. Su, F. Sun, J. Jia, H. He, A. Wang, G. Zhu, “A highly porous medical metal–organic framework constructed from bioactive curcumin. Chem. Commun. 51(26), 5774–5777 (2015)

    Article  CAS  Google Scholar 

  87. Y. Chen, T. Chen, L. Dai, Layer-by‐layer growth of CH3NH3PbI3 – xClx for highly efficient planar heterojunction perovskite solar cells. Adv. Mater. 27(6), 1053–1059 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. L.-N. Duan, Q.-Q. Dang, C.-Y. Han, X.-M. Zhang, “An interpenetrated bioactive nonlinear optical MOF containing a coordinated quinolone-like drug and Zn (II) for pH-responsive release”. Dalton Trans. 44(4), 1800–1804 (2015)

    Article  CAS  PubMed  Google Scholar 

  89. E. Shearier, P. Cheng, Z. Zhu, J. Bao, Y.H. Hu, F. Zhao, Surface defection reduces cytotoxicity of Zn (2-methylimidazole) 2 (ZIF-8) without compromising its drug delivery capacity. RSC Adv. 6(5), 4128–4135 (2016)

    Article  CAS  PubMed  Google Scholar 

  90. W.W. Lestari, M. Arvinawati, R. Martien, T. Kusumaningsih, Green and facile synthesis of MOF and nano MOF containing zinc (II) and benzen 1, 3, 5-tri carboxylate and its study in ibuprofen slow-release. Mater. Chem. Phys. 204, 141–146 (2018)

    Article  CAS  Google Scholar 

  91. T.K. Tajnšek et al, Design and degradation of permanently porous vitamin C and zinc-based metal-organic framework. Commun. Chem. 5(1), 1–9 (2022)

    Article  Google Scholar 

  92. L. Yang et al, “Sensitive contrast-enhanced magnetic resonance imaging of orthotopic and metastatic hepatic tumors by ultralow doses of zinc ferrite octapods”. Chem. Mater. 31(4), 1381–1390 (2019)

    Article  CAS  Google Scholar 

  93. J. Lin et al, “Fe 3 O 4–ZIF-8 assemblies as pH and glutathione responsive T 2–T 1 switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo”. Chem. Commun. 55(4), 478–481 (2019)

    Article  CAS  Google Scholar 

  94. G. Ding et al, “High-performance all-polymer nonfullerene solar cells by employing an efficient polymer-small molecule acceptor alloy strategy”. Nano Energy 36, 356–365 (2017)

    Article  CAS  Google Scholar 

  95. P.D. Harvey, J. Plé, Recent Advances in Nanoscale Metal–Organic Frameworks Towards Cancer Cell Cytotoxicity: An Overview. J. Inorg. Organomet. Polym. 31, 2715–2756 (2021)

    Article  CAS  Google Scholar 

  96. M. Salehipour, S. Rezaei, M. Rezaei et al., Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. J. Inorg. Organomet. Polym. 31, 4443–4462 (2021)

    Article  CAS  Google Scholar 

  97. Y. Cui et al, “A luminescent mixed-lanthanide metal–organic framework thermometer”. J. Am. Chem. Soc. 134(9), 3979–3982 (2012)

    Article  CAS  PubMed  Google Scholar 

  98. S. Shanmugaraju, P.S. Mukherjee, “π-Electron rich small molecule sensors for the recognition of nitroaromatics”. Chem. Commun. 51(89), 16014–16032 (2015)

    Article  CAS  Google Scholar 

  99. Y. Yang et al, “A Zn-MOF constructed from electron-rich π-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor”. RSC Adv. 6(51), 45475–45481 (2016)

    Article  CAS  Google Scholar 

  100. J. An, C.M. Shade, D.A. Chengelis-Czegan, S. Petoud, N.L. Rosi, Zinc-adeninate metal – organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 133(5), 1220–1223 (2011)

    Article  CAS  PubMed  Google Scholar 

  101. A.A. Rexit, “A 2D Zn (II) metal-organic framework constructed from 4, 4′-(perfluoropropane-2, 2-diyl) dibenzoic acid, synthesis, structure and photoluminescence”. J. Coord. Chem. 62(8), 1373–1378 (2009)

    Article  CAS  Google Scholar 

  102. D. Ma et al, A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem. Commun. 49(79), 8964–8966 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ehsani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharramnejad, M., Ehsani, A., salmani, S. et al. Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. J Inorg Organomet Polym 32, 3339–3354 (2022). https://doi.org/10.1007/s10904-022-02385-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02385-y

Keywords

Navigation