Skip to main content
Log in

The applications of metal-organic-frameworks in controlled release of drugs

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

The metal-organic-frameworks (MOFs) materials are used as drug carrying substrate in the controlled release of drugs. MOFs are also considered to harness dual or multiple modalities in therapeutic and diagnostic applications. Based on the research that took place over the last 10 years, this article presents an overview on the recent development of the unmodified and modified MOFs used in drug controlled release applications, and describes their biological evaluations such as, biocompatibility, bio-toxicity, cellular uptakes, tissue responses, and intracellular drug delivery. This review illustrates enormous diversities and complexities which cover complex designs and syntheses, types of MOFs being used, drug loadings, types of drug used, drug release kinetics, and ranges of biological evaluations on the MOFs. Perspectives, insights, critical reflections, and future outlook are presented on the area of drug controlled release research using MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., and Langer, R., Nat. Nanotechnol., 2007, vol. 2, no. 12, p. 751.

    Article  CAS  Google Scholar 

  2. Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., and Ohrstrom, L., Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013), Pure Appl. Chem., 2013, vol. 85, p. 1715.

    Article  CAS  Google Scholar 

  3. Kamaly, N.D., Miller, A.D., and Bell, J., Curr. Top. Med. Chem., 2010, vol. 10, no. 12, p. 1158.

    Article  CAS  Google Scholar 

  4. Rosi, N.L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., and Yaghi, O.M., J. Am. Chem. Soc., 2005, vol. 127, no. 5, p. 1504.

    Article  CAS  Google Scholar 

  5. Yaghi, O.M., Li, G., and Li, H., Nature, 1995, vol. 378, no. 6558, p. 703.

    Article  CAS  Google Scholar 

  6. Li, H., Eddaoudi, M., O’Keeffe, M., and Yaghi, O.M., Nature, 1999, vol. 402, no. 6759, p. 276.

    Article  CAS  Google Scholar 

  7. Yaghi, O.M., Li, H., Davis, C., Richardson, D., and Groy, T.L., Acc. Chem. Res., 1998, vol. 31, no. 8, p. 474.

    Article  CAS  Google Scholar 

  8. James, S.L., Chem. Soc. Rev., 2003, vol. 32, no. 5, p. 276.

    Article  CAS  Google Scholar 

  9. Kim, J., Chen, B., Reineke, T.M., Li, H., Eddaoudi, M., and Moler, D.B., J. Am. Chem. Soc., 2001, vol. 123, no. 34, p. 8239.

    Article  CAS  Google Scholar 

  10. Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., and O’Keeffe, M., Acc. Chem. Res., 2001, vol. 34, no. 4, p. 319.

    Article  CAS  Google Scholar 

  11. Keskin, S. and Kizilel, S., Ind. Eng. Chem. Res., 2011, vol. 50, no. 4, p. 1799.

    Article  CAS  Google Scholar 

  12. Burrows, A.D., Jurcic, M., Keenan, L.L., Lane, R.A., Mahon, M.F., and Warren, M.R., Chem. Commun., 2013, vol. 49, no. 96, p. 11260.

    Article  CAS  Google Scholar 

  13. Banerjee, R., Sahoo, S.C., and Kundu, T., World Patent WO2013051035, 2013.

    Google Scholar 

  14. Furukawa, H., Gandara, F., Zhang, Y.-B., Jiang, J., Queen, W.L., and Hudson, M.R., J. Am. Chem. Soc., 2014, vol. 136, no. 11, p. 4369.

    Article  CAS  Google Scholar 

  15. Seo, Y.-K., Yoon, J.W., Lee, J.S., Hwang, Y.K., Jun, C.-H., and Chang, J.-S., Adv. Mater., 2012, vol. 24, no. 6, p. 806.

    Article  CAS  Google Scholar 

  16. Sahoo, S.C., Kundu, T., and Banerjee, R., J. Am. Chem. Soc., 2011, vol. 133, no. 44, p. 17950.

    Article  CAS  Google Scholar 

  17. Chae, H.K., Eddaoudi, M., Go, Y., Kim, J., and Matzger, A.J., Nature, 2004, vol. 427, p. 523.

    Article  CAS  Google Scholar 

  18. Fletcher, A.J., Thomas, K.M., and Rosseinsky, M.J., J. Solid State Chem., 2005, vol. 178, no. 8, p. 2491.

    Article  CAS  Google Scholar 

  19. Ni, Z., Yassar, A., Antoun, T., and Yaghi, O.M., J. Am. Chem. Soc., 2005, vol. 127, no. 37, p. 12752.

    Article  CAS  Google Scholar 

  20. Rosi, N.L., Eddaoudi, M., Kim, J., O’Keeffe, M., and Yaghi, O.M., Cryst.Eng.Comm, 2002, vol. 4, no. 68, p. 401.

    Article  CAS  Google Scholar 

  21. Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., and Kim, J., Nature, 2003, vol. 423, no. 6941, p. 705.

    Article  CAS  Google Scholar 

  22. Delgado-Friedrichs, O., Foster, M.D., O’Keeffe, M., Proserpio, D.M., Treacy, M.M.J., and Yaghi, O.M., J. Solid State Chem., 2005, vol. 178, no. 8, p. 2533.

    Article  CAS  Google Scholar 

  23. Huxford, R.C., Della Rocca, J., Lin, W., Curr. Opin. Chem. Biol., 2010, vol. 14, no. 2, p. 262.

    Article  CAS  Google Scholar 

  24. An, J., Geib, S.J., and Rosi, N.L., J. Am. Chem. Soc., 2009, vol. 131, no. 24, p. 8376.

    Article  CAS  Google Scholar 

  25. McKinlay, A.C., Morris, R.E., Horcajada, P., Férey, G., Gref, R., and Couvreur, P., Angew. Chem., Int. Ed., 2010, vol. 49, no. 36, p. 6260.

    Article  CAS  Google Scholar 

  26. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., and Baati, T., Nat. Mater., 2010, vol. 9, no. 2, p. 172.

    Article  CAS  Google Scholar 

  27. Lucena, F.R.S., de Araújo, L.C.C., Rodrigues, Md.D., da Silva, T.G., Pereira, V.R.A., and Militão, G.C.G., Biomed. Pharmacother., 2013, vol. 67, no. 8, p. 707.

    Article  CAS  Google Scholar 

  28. Wang, H.-N., Yang, G.-S., Wang, X.-L., and Su, Z.-M., J. Chem. Soc., Dalton Trans., 2013, vol. 42, no. 18, p. 6294.

    Article  CAS  Google Scholar 

  29. Sun, C.-Y., Qin, C., Wang, C.-G., Su, Z.-M., Wang, S., and Wang, X.-L., Adv. Mater., 2011, vol. 23, no. 47, p. 5629.

    Article  CAS  Google Scholar 

  30. Tan, L.-L., Li, H., Qiu, Y.-C., Chen, D.-X., Wang, X., and Pan, R.-Y., Chem. Sci., 2015, vol. 6, no. 3, p. 1640.

    Article  CAS  Google Scholar 

  31. Li, X., Tang, T., Zhou, Y., Zhang, Y., and Sun, Y., Microporous Mesoporous Mater., 2014, vol. 184, p. 83.

    Article  CAS  Google Scholar 

  32. Xue, M. and Findenegg, G.H., Langmuir, 2012, vol. 28, no. 50, p. 17578.

    Article  CAS  Google Scholar 

  33. Dong, L., Peng, H., Wang, S., Zhang, Z., Li, J., and Ai, F., J. Appl. Polymer Sci., 2014, vol. 131, no. 13, p. 40477.

    Article  Google Scholar 

  34. Peng, H., Dong, R., Wang, S., Zhang, Z., Luo, M., and Bai, C., Int. J. Pharm., 2013, vol. 446, nos. 1–2, p. 153.

    Article  CAS  Google Scholar 

  35. Tarn, D., Xue, M., and Zink, J.I., Inorg. Chem., 2013, vol. 52, no. 4, p. 2044.

    Article  CAS  Google Scholar 

  36. Chowdhury, M.A., Curr. Drug Delivery, 2016, vol. 13, no. 6, p. 839.

    Article  CAS  Google Scholar 

  37. Taylor-Pashow, K.M.L., Rocca, J.D., Xie, Z., Tran, S., and Lin, W., J. Am. Chem. Soc., 2009, vol. 131, no. 40, p. 14261.

    Article  CAS  Google Scholar 

  38. Taylor, K.M.L., Rieter, W.J., and Lin, W., J. Am. Chem. Soc., 2008, vol. 130, no. 44, p. 14358.

    Article  CAS  Google Scholar 

  39. Rieter, W.J., Taylor, K.M.L., and Lin, W., J. Am. Chem. Soc., 2007, vol. 129, no. 32, p. 9852.

    Article  CAS  Google Scholar 

  40. Rieter, W.J., Pott, K.M., Taylor, K.M.L., and Lin, W., J. Am. Chem. Soc., 2008, vol. 130, no. 35, p. 11584.

    Article  CAS  Google Scholar 

  41. Chowdhuri, A., Bhattacharya, D., and Sahu, S.K., J. Chem. Soc., Dalton Trans., 2016, vol. 45, no. 7, p. 2963.

    Article  Google Scholar 

  42. Fang, J., Yang, Y., Xiao, W., Zheng, B., Lv, Y.-B., and Liu, X.-L., Nanoscale, 2016, vol. 8, no. 6, p. 3259.

    Article  CAS  Google Scholar 

  43. Wang, D., Zhou, J., Chen, R., Shi, R., Zhao, G., and Xia, G., Biomaterials, 2016, vol. 100, p. 27.

    Article  CAS  Google Scholar 

  44. Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., and Férey, G., Angew. Chem., Int. Ed., 2006, vol. 45, no. 36, p. 5974.

    Article  CAS  Google Scholar 

  45. Horcajada, P., Serre, C., Maurin, G., Ramsahye, N.A., Balas, F., and Vallet-Regí, M., J. Am. Chem. Soc., 2008, vol. 130, no. 21, p. 6774.

    Article  CAS  Google Scholar 

  46. Rowe, M.D., Thamm, D.H., Kraft, S.L., and Boyes, S.G., Biomacromolecules, 2009, vol. 10, no. 4, p. 983.

    Article  CAS  Google Scholar 

  47. Liédana, N., Galve, A., Rubio, C., Téllez, C., and Coronas, J., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 9, p. 5016.

    Article  Google Scholar 

  48. Liang, K., Ricco, R., Doherty, C.M., Styles, M.J., Bell, S., Kirby, N., et al., Nat. Commun., 2015, vol. 6, 7240. doi 10.1038/ncomms8240

    Article  CAS  Google Scholar 

  49. Miller, S.R., Alvarez, E., Fradcourt, L., Devic, T., Wuttke, S., and Wheatley, P.S., Chem. Commun., 2013, vol. 49, no. 71, p. 7773.

    Article  CAS  Google Scholar 

  50. Yin, Z., Wang, Q.-X., and Zeng, M.-H., J. Am. Chem. Soc., 2012, vol. 134, no. 10, p. 4857.

    Article  CAS  Google Scholar 

  51. Zeng, M.-H., Wang, Q.-X., Tan, Y.-X., Hu, S., Zhao, H.-X., and Long, L.-S., J. Am. Chem. Soc., 2010, vol. 132, no. 8, p. 2561.

    Article  CAS  Google Scholar 

  52. Hanke, M., Arslan, H.K., Bauer, S., Zybaylo, O., Christophis, C., and Gliemann, H., Langmuir, 2012, vol. 28, no. 17, p. 6877.

    Article  CAS  Google Scholar 

  53. Chowdhury, M.A., ChemBioEng Rev., 2016, vol. 3, no. 5, p. 229.

    Article  CAS  Google Scholar 

  54. McGuire, C.V. and Forgan, R.S., Chem. Commun., 2015, vol. 51, no. 25, p. 5199.

    Article  CAS  Google Scholar 

  55. Slowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., and Lin, V.S.Y., Adv. Drug Delivery Rev., 2008, vol. 60, no. 11, p. 1278.

    Article  CAS  Google Scholar 

  56. Vallet-Regí, M., Balas, F., and Arcos, D., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 40, p. 7548.

    Article  Google Scholar 

  57. Vallet-Regí, M., Colilla, M., and Gonzalez, B., Chem. Soc. Rev., 2011, vol. 40, no. 2, p. 596.

    Article  Google Scholar 

  58. Yang, P., Gai, S., and Lin, J., Chem. Soc. Rev., 2012, vol. 41, no. 9, p. 3679.

    Article  CAS  Google Scholar 

  59. Vallet-Regí, M., Ruiz-Gonzalez, L., Izquierdo-Barba, I., and Gonzalez-Calbet, J.M., J. Mater. Chem., 2006, vol. 16, no. 1, p. 26.

    Article  Google Scholar 

  60. Trewyn, B.G., Giri, S., Slowing, I.I., and Lin, V.S.Y., Chem. Commun., 2007, vol. 31, p. 3236.

    Article  Google Scholar 

  61. Zhen, G., Yu, D., Xianbin, L., Siu-Choon, N., Yuan, C., and Yanhui, Y., Nanotecnology, 2010, vol. 21, no. 16, p. 165103.

    Article  Google Scholar 

  62. Barbé, C., Bartlett, J., Kong, L., Finnie, K., Lin, H.Q., and Larkin, M., Adv. Mater., 2004, vol. 16, no. 21, p. 1959.

    Article  Google Scholar 

  63. Kura, A., Fakurazi, S., Hussein, M., and Arulselvan, P., Chem. Cent. J., 2014, vol. 8, no. 1, p. 46.

    Article  Google Scholar 

  64. Fu, J., Zhao, Y., Zhu, Y., and Chen, F., in Organics Modified Mesoporous Silica for Controlled Drug Delivery Systems: Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering, Wiley, 2013, p. 237.

    Book  Google Scholar 

  65. He, Q. and Shi, J., J. Mater. Chem., 2011, vol. 21, no. 16, p. 5845.

    Article  CAS  Google Scholar 

  66. Rocca, J.D. and Lin, W., Eur. J. Inorg. Chem., 2010, vol. 24, p. 3725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Chowdhury.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M.A. The applications of metal-organic-frameworks in controlled release of drugs. Ref. J. Chem. 7, 1–22 (2017). https://doi.org/10.1134/S2079978017010022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978017010022

Keywords

Navigation