Skip to main content
Log in

Fe[4-(3-Phenylpropyl)Pyridine]2[Fe(CN)5NO]: A 2D Coordination Polymer with Thermally-Induced Spin Transition and Nature of Its Asymmetric Hysteresis Loop

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The titled material crystallizes with an orthorhombic unit cell, in the P21212 space group (Nr. 18). Its crystal structure was solved and refined from powder XRD patterns. The solid framework is formed by stacked undulated sheets of inorganic nature, Fe[Fe(CN)5NO], separated by bimolecular organic pillars, [4-(3-Phenylpropyl)pyridine]2, which remain coordinated to the axial coordination sites for the iron atom. The molecules forming these pillars remain coupled through C–H⋯π and dispersive interactions between neighboring molecules. When this solid is cooled and then warmed, a reversible spin transition, from high to low spin (HS → LS), and vice versa, is observed. This transition occurs in the temperature interval of 135–165 K, with a hysteresis between them of about 30 K. That hysteresis loop appears with a pronounced asymmetry when the slopes for the HS → LS and LS → HS transitions are compared. This effect is discussed in terms of the related structural changes in the solid structure during the spin transitions. The transition was also monitored from IR and Raman spectra recorded at 80 and 300 K. Relevant information on the electronic structure for both, the LS and HS phases of this material, was derived from the corresponding XPS spectra recorded at 114 and 270 K. This contribution emphasizes the role of the nitrosyl group (NO) as an electron buffer for tuning the bonding properties of the inorganic layer at the CN 5σ orbital to make possible the observed thermally-induced SCO behavior.

Graphical Abstract

The thermally-induced spin transition in this solid shows an asymmetric hysteresis loop, which was ascribed to the nature of the pillar molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Reguera, Y. Avila, E. Reguera, Transition metal nitroprussides: crystal and electronic structure, and related properties. Coord. Chem. Rev. 434, 213764 (2021). https://doi.org/10.1016/j.ccr.2020.213764

    Article  CAS  Google Scholar 

  2. E. König, G. Ritter, S.K. Kulshreshtha, The nature of the spin-state transitions in solid complexes of iron(II) and the interpretation of some associated phenomena. Chem. Rev. 85, 219–234 (1985). https://doi.org/10.1021/cr00067a003

    Article  Google Scholar 

  3. E. König, Structural changes accompanying continuous and discontinuous spin-state transitions. Prog. Inorg. Chem. 35, 527–622 (1987)

    Google Scholar 

  4. O. Kahn, J. Kröber, C. Jay, Spin transition molecular materials for displays and data recording. Adv. Mater. 4, 718–728 (1992). https://doi.org/10.1002/adma.19920041103

    Article  CAS  Google Scholar 

  5. P. Gütlich, Y. Garcia, H. Spiering, Spin Transition Phenomena, in Magnetism: Molecules to Materials IV (Wiley, Weinheim, 2003), pp. 271–344

    Book  Google Scholar 

  6. M.A. Halcrown, Spin-Crossover Materials: Properties and Applications, 1st edn. (Wiley, New York, 2013)

    Book  Google Scholar 

  7. P. Gütlich, A.B. Gaspar, Y. Garcia, Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 9, 342–391 (2013). https://doi.org/10.3762/bjoc.9.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O. Kahn, C.J. Martínez, Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998). https://doi.org/10.1126/science.279.5347.44

    Article  CAS  Google Scholar 

  9. S. Vela, M. Fumanal, J. Cirera, J. Ribas-Arino, Thermal spin crossover in Fe(II) and Fe(III). Accurate spin state energetics at the solid state. Phys. Chem. Chem. Phys. 22, 4938–4945 (2020)

    Article  CAS  Google Scholar 

  10. S. Vela, M. Fumanal, J. Ribas-Arino, V. Robert, Towards accurate and computationally-efficient modelling of Fe(II)-based spin-crossover materials. Phys. Chem. Chem. Phys. 17, 16306–16314 (2015). https://doi.org/10.1039/C5CP02502H

    Article  CAS  PubMed  Google Scholar 

  11. M.D. Manrique-Juarez, S. Rat, L. Salmon, G. Molnár, C.M. Quintero, L. Nicu, H.J. Shepherd, A. Bousseksou, Switchable molecule-based materials for micro-and nanoscale actuating applications: achievements and prospects. Coord. Chem. Rev. 308, 395–408 (2016). https://doi.org/10.1016/j.ccr.2015.04.005

    Article  CAS  Google Scholar 

  12. C. Lefter, R. Tan, J. Dugay, S. Tricard, G. Molnar, L. Salmon, J. Carrey, W. Nicolazzi, A. Rotaru, A. Bousseksou, Unidirectional electric field-induced spin-state switching in spin-crossover based microelectronic devices. Chem. Phys. Let. 644, 138–141 (2016). https://doi.org/10.1016/j.cplett.2015.11.036

    Article  CAS  Google Scholar 

  13. J. Linares, E. Codjovi, Y. García, Pressure and temperature spin crossover sensors with optical detection. Sensors 12, 4479–4497 (2012). https://doi.org/10.3390/s120404479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H.J. Shepherd, I. Guralskiy, C.M. Quintero, S. Tricard, L. Salmon, G. Molnár, A. Bousseksou, Molecular actuators driven by cooperative spin-state switching. Nat. Commun. 4, 2607 (2013)

    Article  Google Scholar 

  15. J.-F. Létard, P. Guionneau, L. Goux-Capes, Towards spin crossover applications. Top. Curr. Chem. 236, 221–249 (2004). https://doi.org/10.1007/b95429

    Article  CAS  Google Scholar 

  16. A. Bousseksou, G. Molnár, The spin-crossover phenomenon: towards molecular memories. Compt. Rendus Chemie 6, 1175–1183 (2003). https://doi.org/10.1016/j.crci.2003.08.011

    Article  CAS  Google Scholar 

  17. C. Lefter, V. Davesne, L. Salmin, G. Molnár, P. Demont, A. Rotaru, A. Bousseksou, Charge transport and electrical properties of spin crossover materials: towards nanoelectronic and spintronic devices. Magnetochemistry 2, 18 (2018). https://doi.org/10.3390/magnetochemistry2010018

    Article  CAS  Google Scholar 

  18. K.S. Kumar, M. Ruben, Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 346, 176–205 (2017). https://doi.org/10.1016/j.ccr.2017.03.024

    Article  CAS  Google Scholar 

  19. M.B. Bushuev, Kinetics of spin-crossover with thermal hysteresis. Phys. Chem. Chem. Phys. 20, 5586–5590 (2018). https://doi.org/10.1039/C7CP08554K

    Article  CAS  PubMed  Google Scholar 

  20. G. Molnár, V. Niel, J.A. Real, L. Dubrovinsky, A. Bousseksou, J.J. McGarvey, Raman spectroscopic study of pressure effects on the spin-crossover coordination polymers Fe(Pyrazine)[M(CN)4]·2H2O (M = Ni, Pd, Pt). First observation of a Piezo-hysteresis loop at room temperature. J. Phys. Chem. B 107, 3149–3155 (2003)

    Article  Google Scholar 

  21. A. Hauser, Light-induced spin crossover and the high-spin→ low-spin relaxation. Top. Curr. Chem. 234, 155–198 (2004). https://doi.org/10.1007/b95416

    Article  CAS  Google Scholar 

  22. B. Brachňaková, I. Šalitroš, Ligand-driven light-induced spin transition in spin-crossover compounds. Chem. Pap. 72, 773–798 (2018). https://doi.org/10.1007/s11696-017-0377-3

    Article  CAS  Google Scholar 

  23. C. Mondal, S.K. Mandal, Electrically controllable molecular spin-crossover switching in Fe (phen)2(NCS)2 thin film. Eur. J. Phys. 75, 30201 (2016). https://doi.org/10.1051/epjap/2016160258

    Article  CAS  Google Scholar 

  24. A. Bousseksou, F. Varret, M. Goiran, K. Boukheddaden, J.P. Tuchagues, The spin-crossover phenomenon under high magnetic field. Top. Curr. Chem. 235, 65–84 (2004). https://doi.org/10.1007/b95422

    Article  CAS  Google Scholar 

  25. F.J.M. Lara, A.B. Gaspar, D. Aravena, E. Ruiz, M.C. Muñoz, M. Ohba, R. Othani, S. Kitagawa, J.A. Real, Enhanced bistability by guest inclusion in Fe(ii) spin crossover porous coordination polymers. Chem. Commun. 48, 4686–4688 (2012). https://doi.org/10.1039/C2CC31048A

    Article  Google Scholar 

  26. J. Rodríguez-Hernández, A.A. Lemus-Santana, C.N. Vargas, E. Reguera, Three structural modifications in the series of layered solids T(H2O)2[Ni(CN)4]⋅xH2O with T = Mn Co, Ni: their nature and crystal structures. C. R. Chimie 15, 350–355 (2012). https://doi.org/10.1016/j.crci.2011.11.004

    Article  CAS  Google Scholar 

  27. V. Niel, J.M. Martinez-Agudo, M.C. Muñoz, A.B. Gaspar, J.A. Real, Cooperative spin crossover behavior in cyanide-bridged Fe(II)−M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 40, 3838–3839 (2001). https://doi.org/10.1021/ic010259y

    Article  CAS  PubMed  Google Scholar 

  28. V. Martínez, I. Boldog, A.B. Gaspar, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, J.A. Real, Spin crossover phenomena in nanocrystals and nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) two-coordination polymers. Chem. Mater. 22, 4271–4281 (2010). https://doi.org/10.1021/cm101022u

    Article  CAS  Google Scholar 

  29. M.C. Muñoz, J.A. Real, Thermo-, piezo-, photo-and chemo-switchable spin-crossover iron(II)-metallocyanate based coordination polymers. Coord. Chem. Rev. 255, 2068–2093 (2011). https://doi.org/10.1016/j.ccr.2011.02.004

    Article  CAS  Google Scholar 

  30. Y. Avila, H. Osiry, Y. Plasencia, A.E. Torres, M. González, A.A. Lemus-Santana, E. Reguera, From 3D to 2D transition metal nitroprussides by selective rupture of axial bonds. Chem. Eur. J. 25, 11327–11336 (2019). https://doi.org/10.1002/chem.201902168

    Article  CAS  PubMed  Google Scholar 

  31. Y. Avila, Y. Plasencia, H. Osiry, L. Martínez-dlCruz, M. González, E. Reguera, Thermally induced spin transition in a 2D ferrous nitroprusside. Eur. J. Inorg. Chem. (2019). https://doi.org/10.1002/ejic.201900837

    Article  Google Scholar 

  32. Y. Avila, P.M. Crespo, Y. Plasencia, H.R. Mojica, J. Rodríguez-Hernández, E. Reguera, Intercalation of 3X-pyridine with X = F, Cl, Br, I in 2D ferrous nitroprusside. Thermally induced spin transition in Fe(3F-pyridine)2[Fe(CN)5NO]. J. Solid State Chem. 286, 121293 (2020). https://doi.org/10.1016/j.jssc.2020.121293

    Article  CAS  Google Scholar 

  33. Y. Avila, P.M. Crespo, Y. Plasencia, H.R. Mojica, J. Rodríguez-Hernández, E. Reguera, Thermally-induced spin crossover in Fe(PyrDer)2[Fe(CN)5NO] with PyrDer = 4-substituted pyridine derivatives. N. J. Chem. 44, 5937–5946 (2020). https://doi.org/10.1039/D0NJ00595A

    Article  CAS  Google Scholar 

  34. Y. Plasencia, Y. Avila, J. Rodríguez-Hernández, M. Avila, E. Reguera, Thermally-induced spin transition in Fe(pyrazine)[Fe(CN)5NO]. J. Phys. Chem. Solids 150, 109843 (2021). https://doi.org/10.1016/j.jpcs.2020.109843

    Article  CAS  Google Scholar 

  35. Y. Avila, K. Scanda, R. Mojica, J. Rodríguezs-Hernández, L.A. Cruz-Santiago, M. González, E. Reguera, Thermally-induced spin transition in Fe(4,4´-Azopyridine)[Fe(CN)5NO]. J. Solid State Chem. 310, 123054 (2022). https://doi.org/10.1016/j.jssc.2022.123054

    Article  CAS  Google Scholar 

  36. A. Boultif, D. Louer, Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr. 24, 987–993 (1991). https://doi.org/10.1107/S0021889891006441

    Article  CAS  Google Scholar 

  37. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. 46, 1231 (2013). https://doi.org/10.1107/S0021889813013113

    Article  CAS  Google Scholar 

  38. A. Le Bail, H. Duroy, J.L. Fourquet, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull. 23, 447–452 (1988). https://doi.org/10.1016/0025-5408(88)90019-0

    Article  Google Scholar 

  39. J. Rodríguez-Carvajal, FullProf Suite 2013 (Institute Leon Brillouin, Saclay, 2013)

    Google Scholar 

  40. R. S. Drago, Physical Methods for Chemists, Saunders College Publishing, Gainesville, 2nd Edn, 1962, Ch. 11.

  41. G. Kresse, J. Furthmüller, Efficiency of ab-initio total-energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  42. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  43. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  44. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 49, 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  45. N.C. Halder, C.N.J. Wagner, Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 20, 312–313 (1966). https://doi.org/10.1107/S0365110X66000628

    Article  CAS  Google Scholar 

  46. A. Cano, J. Rodríguez-Hernández, A. Shchukarev, E. Reguera, Intercalation of pyrazine in layered copper nitroprusside: synthesis, crystal structure and XPS study. J. Solid State Chem. 273, 1–10 (2019). https://doi.org/10.1016/j.jssc.2019.02.015

    Article  CAS  Google Scholar 

  47. A. Cano, L. Lartundo-Rojas, A. Shchukarev, E. Reguera, Contribution to the coordination chemistry of transition metal nitroprussides: a cryo-XPS study. N. J. Chem. 43, 4835–4848 (2019). https://doi.org/10.1039/c9nj00141g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the LNCAE (Laboratorio Nacional de Conversión y Almacenamiento de Energía) for access to its experimental facility. This study was partially supported by the project SECTEI/185/2021. R. Mojica and E. Reguera acknowledge LANCAD (Laboratorio Nacional de Cómputo de Alto Desempeño) for the use of supercomputer facilities through the project 21-2022.

Funding

This study was partially supported by the project SECTEI/185/2021. R. Mojica and E. Reguera acknowledge LANCAD (Laboratorio Nacional de Cómputo de Alto Desempeño) for the use of supercomputer facilities through the project 21-2022.

Author information

Authors and Affiliations

Authors

Contributions

All the authors of this manuscript have a similar level of contribution to its preparation and during the experimental work.

Corresponding authors

Correspondence to J. Rodríguez-Hernández or E. Reguera.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scanda, K., Avila, Y., Mojica, R. et al. Fe[4-(3-Phenylpropyl)Pyridine]2[Fe(CN)5NO]: A 2D Coordination Polymer with Thermally-Induced Spin Transition and Nature of Its Asymmetric Hysteresis Loop. J Inorg Organomet Polym 32, 3677–3690 (2022). https://doi.org/10.1007/s10904-022-02360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02360-7

Keywords

Navigation