Skip to main content

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 235))

Abstract

In this chapter we attempt to review the potential for the application of the spin crossover (SCO) phenomenon in various domains, such as molecular electronics, data storage, display devices. It is evident that SCO properties, such as room-temperature working range, chemical stability, low addressing power, short addressing time, full reversibility, are of promising value in the context of the stringent limits necessary in the future development of information technology, due to the unceasing miniaturization of the components. Of course, many requirements must be fulfilled before any use in a genuine device becomes feasible. Some of these are emphasized and discussed here. Additionally, this review reports recent progress in non-linear optics and photomagnetism of SCO materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AFM:

Atomic force microscope

β:

First molecular hyperpolarizability tensor

bpp:

2,6-Bis(pyrazol-3-yl)pyridine

btr:

4,4′-Bitriazole

CD:

Compact discs

CRT:

Cathode-ray tube

Htrz:

1,2,4-Triazole

Hyettrz:

4-(2′-Hydroxyethyl)-1,2,4-triazole

ILCT:

Intra-ligand charge transfer

LB:

Langmuir-Blodgett

LCD:

Liquid crystal display

MLCT:

Metal-to-ligand charge transfer

MO:

Magneto-optics

NH2trz:

4-Amino-1,2,4-triazole

NLO:

Non-linear optics

PM-Bia:

2′-Pyridylmethylene 4-aminobiphenyl

PM-PEA:

N-2′-Pyridylmethylene-4-phenyl-ethynylaniline

PM-2PEA:

N-2′-Pyridylmethylene-4-phenyl-ethynylphenylethynylaniline

SONLO:

Second order non-linear optics

SPE:

Super paramagnetic effect

trz:

1,2,4-Triazolate(1-) ion

tvp:

Bis-1,2-di(4-pyridyl)ethylene

References

  1. Moore GE (1965) Electronics 38:114

    Google Scholar 

  2. Moore GE (1975) In: Digest of the 1975 International Electron Devices meeting, IEEE, New York, p 1113

    Google Scholar 

  3. Feynman RP (1960) Eng Sci 23:22

    Google Scholar 

  4. Feynman RP (1960) Saturday Rev 43:45

    Google Scholar 

  5. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277

    Google Scholar 

  6. Day P (1996) Chem Br 32:29

    Google Scholar 

  7. Day P (1998) Proceeding of the Royal Institution of Great Britain, vol 69. Oxford University Press

    Google Scholar 

  8. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550

    Google Scholar 

  9. Metzger RM (1999) Acc Chem Res 32:950

    Google Scholar 

  10. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Angew Chem Int Ed 39:3348

    Google Scholar 

  11. Huang Y, Duan X, Cui Y, Lauhon LJ, Kim K-H, Lieber CM (2001) Science 294:1313

    Google Scholar 

  12. Raymo FM (2002) Adv Mater 14:401

    Google Scholar 

  13. Balzani V, Credi A, Venturi M (2002) Chem Eur J 8:5525

    Google Scholar 

  14. Caroll RL, Gorman CB (2002) Angew Chem Int Ed Eng 41:4378

    Google Scholar 

  15. The international technology roadmap for semiconductors (2001) Update (http://public.itrs.net/)

    Google Scholar 

  16. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed Engl 33:2024

    Google Scholar 

  17. Bousseksou A, Negre N, Goiran M, Salmon L, Tuchagues J-P, Boillot M-L, Boukheddaden K, Varret F (2000) Eur Phys JB 13:451

    Google Scholar 

  18. Zarembowitch J, Kahn O (1991) New J Chem 15:181

    Google Scholar 

  19. Kahn O, Kröber J, Jay C (1992) Adv Mater 4:718

    Google Scholar 

  20. Kahn O, Jay-Martinez C (1998) Science 279:44

    Google Scholar 

  21. Service RF (1996) Science 274:1834

    Google Scholar 

  22. Gimzewski JK, Joachim C (1999) Science 283:1683

    Google Scholar 

  23. Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541

    Google Scholar 

  24. Tour JM, Kozaki M, Seminario JM (1998) J Am Chem Soc 120:8486

    Google Scholar 

  25. Fabbrizzi I, Licchelli M, Pallavicini P (1999) Acc Chem Res 32:846

    Google Scholar 

  26. Willner I, Katz E (2000) Angew Chem Int Ed 39:1180

    Google Scholar 

  27. Irie M (2000) Chem Rev 100:1685

    Google Scholar 

  28. Yokoyama Y (2000) Chem Rev 100:1717

    Google Scholar 

  29. Berkovic G, Krongauz V, Weiss V (2000) Chem Rev 100:1741

    Google Scholar 

  30. Feringa BL, Van Delden RA, Koumura N, Geertsema EM (2000) Chem Rev 100:1789

    Google Scholar 

  31. Feringa BL (2001) Acc Chem Soc 101:504

    Google Scholar 

  32. Diederich F (2001) Chem Commun 219

    Google Scholar 

  33. De Silva AP, Gunaratne ON, MCCoy CP (1993) Nature 42:364

    Google Scholar 

  34. De Silva AP, De Silva AA, Dissanavake AS, Sandanayake KRAS (1989) J Chem Soc Chem Commun 1054

    Google Scholar 

  35. Special Issue on “Optical networking” (1994) Bell Labs Tech J 4:3

    Google Scholar 

  36. Soyer H, Mingotaud C, Boillot M-L, Delhaès P (1998) Thin Solids Films 327/329:435

    Google Scholar 

  37. Soyer H, Mingotaud C, Boillot M-L, Delhaès P (1998) Langmuir 14:5890

    Google Scholar 

  38. Létard J-F, Nguyen O, Soyer H, Mingotaud C, Delhaès P, Kahn O (1999) Inorg Chem 38:3020

    Google Scholar 

  39. Kugler J (2002) Computer Science, 321 and references cited therein

    Google Scholar 

  40. Thompson DA, Best JS (2000) IBM J Res Dev 44:311

    Google Scholar 

  41. Shen Y, Friend CS, Jiang Y, Jakubczyk D, Swiatkiewicz J, Prasad PN (2000) J Phys Chem B 104:7577

    Google Scholar 

  42. Eschenfelder AH (1970) J Appl Phys 42:1372

    Google Scholar 

  43. Wildmann M (1974) IEEE Trans Magn 10:509

    Google Scholar 

  44. Ashley J et al. (2000) IBM J Res Develop 44:341

    Google Scholar 

  45. Binnig G, Despont M, Drechsler U, Häberle W, Lutwyche M, Vettiger P, Mamin HJ, Chui BW, Kenny TW (1999) Appl Phys Lett 74:1329

    Google Scholar 

  46. Vettiger P et al. (2000) IBM J Res Develop 44

    Google Scholar 

  47. Kahn O, Launay JP (1988) Chemtronics 3:140

    Google Scholar 

  48. Fujita W, Awaga K (1999) Science 286:261

    Google Scholar 

  49. Itkis ME, Chi X, Cordes AW, Haddon (2002) Science, 296:1443

    Google Scholar 

  50. Stoddard JF (2001) Acc Chem Res 34:410

    Google Scholar 

  51. Stoddard JF, Heath JR (2000) Science 289:1172

    Google Scholar 

  52. Spiering H, Kohlhaas H, Romstedt H, Hauser A, Bruns-Yilmaz C, Kusz J, Gütlich P (1999) Coord Chem Rev 190/192:629

    Google Scholar 

  53. Hauser A, Jeftic J, Romstedt H, Hinek R, Spiering (1999) Coord Chem Rev 109/192:471

    Google Scholar 

  54. Real JA, Gaspar AB, Niel V, Muñoz MC (2003) Coord Chem Rev 236:121

    Google Scholar 

  55. König E (1987) Prog Inorg Chem 35:527

    Google Scholar 

  56. König E, Ritter G (1976) Solid State Comm 18:279

    Google Scholar 

  57. Létard J-F, Guionneau P, Codjovi E, Lavastre O, Bravic G, Chasseau D, Kahn O (1997) J Am Chem Soc 119:10,861

    Google Scholar 

  58. Zhong ZJ, Tao J-Q, Yu Z, Dun C-Y, Liu Y-J, You X-Z (1998) J Chem Soc Dalton Trans 327

    Google Scholar 

  59. Guionneau P, Létard J-F, Yufit DS, Chasseau D, Bravic G, Goeta AE, Howard JAK, Kahn O (1999) J Mater Chem 9:985

    Google Scholar 

  60. Vreugdenhil W, Van Diemen JH, De Graff AG, Haasnoot JG, Reedijk J, Van der Kraan AM, Kahn O, Zarembowitch J (1990) Polyhedron 9:2971

    Google Scholar 

  61. Real JA, Andrès E, Muñoz MC, Julve M, Granier T, Bousseksou A, Varret F (1995) Science 268:265

    Google Scholar 

  62. Kitazawa T, Gomi Y, Takahashi M, Takeda M, Enomoto M, Miyazaki A, Enoki T (1996) J Mater Chem 6:119

    Google Scholar 

  63. Garcia Y, Kahn O, Rabardel L, Chansou B, Salmon L, Tuchagues JP (1999) Inorg Chem 38:4663

    Google Scholar 

  64. Garcia Y, van Koningbsruggen PJ, Bravic G, Guionneau P, Chasseau D, Cascarano GL, Moscovici J, Lambert K, Michalowicz A, Kahn O (1997) Inorg Chem 36:6357

    Google Scholar 

  65. Haasnoot JG, Vos G, Groeneveld WL (1977) Z Naturforsch B 32:1421

    Google Scholar 

  66. Lavrenova LG, Ikorskii NV, Varnek VA, Oglezneva IM, Larionov SV (1986) Koord Khim 12:207

    Google Scholar 

  67. Lavrenova LG, Ikorskii NV, Varnek VA, Oglezneva IM, Larionov SV (1990) Koord Khim 16:654

    Google Scholar 

  68. Kahn O (1999) Chem Br 24

    Google Scholar 

  69. Montant S, Létard S, Freysz E, Chastanet G, Marcen S, Létard J-F (2002) 5 TMR-TOSS Meeting, 7th Spin Crossover Family Meeting, Mainz, Germany

    Google Scholar 

  70. Bousseksou A, Molnár G, Tuchagues JP, Menéndez N, Codjovi E, Varret F (2003) C R—Chim 6:329

    Google Scholar 

  71. Létard J-F (2002) SFC Eurochem Toulouse

    Google Scholar 

  72. Bolvin H (1993) PhD thesis, University of Paris-Sud

    Google Scholar 

  73. Müller EW, Spiering H, Gütlich P (1982) Chem Phys Lett 93:567

    Google Scholar 

  74. Tsuchiya N, Tsukamoto A, Ohshita T, Isobe T, Senna M, Yoshioka N, Inoue H (2001) Solid State Sci 3:705

    Google Scholar 

  75. Real JA, Zarembowitch J, Kahn O, Solans X (1987) Inorg Chem 26:2939

    Google Scholar 

  76. Vos G, Le Fêbre RA, De Graaff RAG, Haasnoot JG, Reedijk J (1983) J Am Chem Soc 105:1682

    Google Scholar 

  77. Breuning E, Ruben M, Lehn J-M, Renz F, Garcia Y, Ksenofontov V, Gütlich P, Wegelius E, Rissanen K (2000) Angew Chem Int Ed 39:2504

    Google Scholar 

  78. Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Adv Colloid Interface Sci 55:241

    Google Scholar 

  79. Moulik SP, De Panda GC, Bhowmik BB, Das AR (2001) Langmuir 17:1811

    Google Scholar 

  80. Vaucher S, Li M, Mann S (2000) Angew Chem Int Ed 39:1793

    Google Scholar 

  81. Collin JP, Dietrich-Buchecker C, Gaviña P, Jimenez-Molero MC, Sauvage J-P (2001) Acc Chem Res 34:477

    Google Scholar 

  82. Enachescu C, Oetliker U, Hauser A (2002) J Phys Chem B Condens Matter 106:9540

    Google Scholar 

  83. Mentley DE (2002) Proceedings of the IEEE 90:453

    Google Scholar 

  84. Kimmel J, Hautanen J, Levola T (2002) Proceedings of the IEEE 90:581

    Google Scholar 

  85. Wisnieff RL, Ritsko JJ (2000) IBM J Res Dev 44:409

    Google Scholar 

  86. Tannas LE (1985) Flat panel displays and CRTs. Van Nostrand, New York, pp 1–158

    Google Scholar 

  87. Marconi Wireless Telegraph Company (1936) British Patent 441 274

    Google Scholar 

  88. Williams RJ (1963) J Chem Phys 39:384

    Google Scholar 

  89. Haasnoot JG (2000) Coord Chem Rev 200/202:131

    Google Scholar 

  90. Bausk NV, Erenburg SB, Mazalov LN, Lavrenova LG, Ikorskii VN (1994) J Struct Chem 35:509

    Google Scholar 

  91. Kröber J, Audière JP, Renée C, Codjovi E, Kahn O, Haasnoot JG, Grolière F, Jay C, Bousseksou A, Linarès J, Varret F, Gonthier-Vassal A (1994) Chem Mater 6:1404

    Google Scholar 

  92. Kahn O, Codjovi E (1996) Phil Trans R Soc Lond A 354:359

    Google Scholar 

  93. Sugiyarto KH, Goodwin HA (1994) Aust J Chem 47:263

    Google Scholar 

  94. Sorai M, Ensling J, Gütlich P (1976) Chem Phys 18:199

    Google Scholar 

  95. Lavrenova LG, Ikorskii NV, Varnek VA (1993) Zh Strukt Khim 34:145

    Google Scholar 

  96. Varnek VA, Lavrenova LG (1994) J Struct Chem 35:842

    Google Scholar 

  97. Varnek VA, Lavrenova LG (1995) J Struct Chem 36:97, 104

    Google Scholar 

  98. Lavrenova LG, Yudina NG, Ikorskii NV, Varnek VA, Oglezneva IM, Larionov SV (1995) Polyhedron 14:1333

    Google Scholar 

  99. Jay C, Groliere F, Kahn O, Kröber J (1993) Mol Cryst Liq Cryst 234:255

    Google Scholar 

  100. Létard J-F et al. (2000) Third TMR-TOSS Meeting, 5th Spin Crossover Family Meeting, Oegstgeest, Netherlands

    Google Scholar 

  101. Codjovi E, Sommier L, Kahn O (1996) New J Chem 20:503

    Google Scholar 

  102. Garcia Y, Van Koningsbruggen P, Codjovi E, Lapouyade R, Kahn O, Rabardel L (1997) J Mater Chem 7:857

    Google Scholar 

  103. Kahn O, Jay-Martinez C, Garcia Y, Codjovi E (1998) Patents EP0842988

    Google Scholar 

  104. Sugiyarto KH, Craig DC, Rae AD, Goodwin HA (1994) Aust J Chem 47:869

    Google Scholar 

  105. Chemla DS, Zyss J (1987) Non-linear optical properties of organic molecules and crystals. Academic Press, Orlando, FL

    Google Scholar 

  106. Franken PA, Hill AE, Peters CW (1961) Phys Rev Lett 7:118

    Google Scholar 

  107. Oudar JL (1977) J Chem Phys 67:446

    Google Scholar 

  108. Zyss J (1991) Non-linear Opt 1:3

    Google Scholar 

  109. Long NJ (1995) Angew Chem Int Ed Engl 34:21

    Google Scholar 

  110. Lehn JM (1995) Supramolecular chemistry-concepts and perspectives. VCH, Weinheim

    Google Scholar 

  111. Coe BJ (1999) Chem Eur J 5:2464

    Google Scholar 

  112. Loucif-Saïbi R, Nakatani K, Delaire JA, Dumont M, Sekkat Z (1993) Chem Mater 5:229

    Google Scholar 

  113. Nakatani K, Delaire JA (1997) Chem Mater 9:2682

    Google Scholar 

  114. Gilat SL, Kawai SH, Lehn JM (1995) Chem Eur J 1:275

    Google Scholar 

  115. Nagumura T, Sakaguchi H, Matsuo T (1992) Thin Solid Films 210:160

    Google Scholar 

  116. Coe BJ, Chamberlain MC, Essex-Lopresti JP, Gaines S, Jeffery JC, Houbrechts S, Persoons A (1997) Inorg Chem 36:3284

    Google Scholar 

  117. Di Bella S, Fragalà I, Ledoux I, Marks TJ (1995) J Am Chem Soc 117:9481

    Google Scholar 

  118. Di Bella S, Fragalà I, Marks TJ, Ratner MA (1996) J Am Chem Soc 118:12,747

    Google Scholar 

  119. Gaudry JB, Capes L, Langot P, Marcén S, Kollmannsberger M, Lavastre O, Freysz E, Létard J-F, Kahn O (2000) Chem Phys Lett 324:321

    Google Scholar 

  120. Averseng F, Lepetit C, Lacroix PG, Tuchagues J-P (2000) Chem Mater 12:2225

    Google Scholar 

  121. Gütlich P, Garcia Y, Woike T (2001) Coord Chem Rev 219/221:839

    Google Scholar 

  122. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Chem Phys Lett 105:1

    Google Scholar 

  123. Hauser A (1986) Chem Phys Lett 124:543

    Google Scholar 

  124. Xie C-L, Hendrickson DN (1987) J Am Chem Soc 109:6981

    Google Scholar 

  125. Hauser A (1991) J Phys Chem 94:2741

    Google Scholar 

  126. Hauser A, Vef A, Adler P (1991) J Chem Phys 95:8710

    Google Scholar 

  127. Hauser A (1991) Coord Chem Rev 111:275

    Google Scholar 

  128. A Hauser (1995) Comm Inorg Chem 17:17

    Google Scholar 

  129. Buhks E, Navon G, Bixon M, Jortner J (1980) J Am Chem Soc 102:2918

    Google Scholar 

  130. Wu CH, Jung J, Gantzel PK, Gütlich P, Hendrickson DN (1997) Inorg Chem 36:5339

    Google Scholar 

  131. Létard J-F, Guionneau P, Rabardel L, Howard JA, Goeta AE, Chasseau D, Kahn O (1998) Inorg Chem 37:4432

    Google Scholar 

  132. Renz F, Oshio H, Ksenofontov V, Waldeck M, Spiering H, Gütlich P (2000) Angew Chem 39:3699

    Google Scholar 

  133. Létard J-F, Capes L, Chastanet G, Moliner N, Létard S, Real J-A, Kahn O (1999) Chem Phys Lett 313:115

    Google Scholar 

  134. Marcen S, Lecren L, Capes L, Goodwin HA, Létard J-F (2002) Chem Phys Lett 358:87

    Google Scholar 

  135. Shimamoto N, Ohkoshi S-S, Sato O, Hashimoto K (2002) Inorg Chem 41:678

    Google Scholar 

  136. Marcen S, Lecren L, Capes L, Guionneau P, Létard J-F (2002) Final TMR-TOSS Meeting, 7th Spin Crossover Family Meeting, Seeheim, Germany

    Google Scholar 

Download references

Acknowledgements

We thank the European Commission for granting the TMR-Network “Thermal and Optical Switching of Spin States (TOSS)”, Contract No. ERB-FMRX-CT98-0199 and the COST D14 program “Non-linear magneto-optical properties of organic and metallo-organic compounds: potential molecule-based switches”. The financial support from the CNRS-ACO “Mémoire holographique dans des disques photopolymères dopés” and DFG/CNRS bilateral project “Towards the Design of Molecular Switches”, University and city of Bordeaux, is greatly appreciated.

Most of the work discussed here was initiated by the late Olivier Kahn to whom the authors dedicate this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Létard .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Létard, JF., Guionneau, P., Goux-Capes, L. Towards Spin Crossover Applications. In: Spin Crossover in Transition Metal Compounds III. Topics in Current Chemistry, vol 235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95429

Download citation

  • DOI: https://doi.org/10.1007/b95429

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40395-1

  • Online ISBN: 978-3-540-44984-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics