Skip to main content
Log in

Alginate@Layered Silicate Composite Beads: Dye Elimination, Box–Behnken Design Optimization and Antibacterial Property

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The discharge of industrial waste comprising organic pollutants into aquatic environment induces numerous health risks. Crosslinked adsorbent beads were developed based on the alginate and the modified layered silicate (Ni-magadiite) for a promising removal of methylene blue (MB) dye. Response surface methodology (RSM), with Box–Behnken design matrix was successfully employed for the optimization of the adsorption parameters. The characterization of composite beads was realized by XRD, FTIR, SEM and TGA analysis. The results revealed that the adsorbent beads have more diverse and uneven morphology with the availability of functional groups and more thermally stable. Under the optimal conditions, the composite hydrogel beads showed a 95.17% removal efficiency of MB dye. The MB adsorption process follows a pseudo second order kinetic model with the adsorption isotherm adjusted to a Langmuir model. According to the statistical analysis of variance (ANOVA), the proposed quadratic model was significant, with a good correlation between the experimental and predicted data of the desired response. The reuse efficiency of the hydrogel beads was demonstrated with a removal efficiency of 85.48% after the third use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Manna, P. Das, P. Basak, A.K. Sharma, V.K. Singh, R.K. Patel, J.K. Pandey, V. Ashokkumar, A. Pugazhendhi, Separation of pollutants from aqueous solution using nanoclay and its nanocomposites: a review. Chemosphere 280, 130961 (2021)

    Article  CAS  Google Scholar 

  2. J.A. Cotruvo, 2017 Who guidelines for drinking water quality: first addendum to the fourth edition. J. Am. Water Works Assoc. 109, 44 (2017). https://doi.org/10.5942/jawwa.2017.109.0087

    Article  Google Scholar 

  3. N. Todorović, J. Nikolov, I. Stojković, J. Hansman, A. Vraničar, P. Kuzmanović, T. Petrović Pantić, K. Atanasković Samolov, S. Lučić, S. Bjelović, Radioactivity in drinking water supplies in the Vojvodina region, Serbia, and health implication. Environ. Earth Sci. 79, 192 (2020). https://doi.org/10.1007/s12665-020-08904-9

    Article  CAS  Google Scholar 

  4. S. Sangon, A.J. Hunt, T.M. Attard, P. Mengchang, Y. Ngernyen, N. Supanchaiyamat, Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J. Clean. Prod. 172, 1128–1139 (2018). https://doi.org/10.1016/j.jclepro.2017.10.210

    Article  CAS  Google Scholar 

  5. J. Shi, H. Zhang, Y. Yu, X. Zou, W. Zhou, J. Guo, Y. Ye, Y. Zhao, Adsorption properties of calcium alginate-silica dioxide hybrid adsorbent to methylene blue. J. Inorg. Organomet. Polym. Mater. 30, 2114–2125 (2020). https://doi.org/10.1007/s10904-019-01357-z

    Article  CAS  Google Scholar 

  6. A. Mokhtar, S. Abdelkrim, M. Hachemaoui, M. Adjdir, M. Zahraoui, B. Boukoussa, Layered silicate magadiite and its composites for pollutants removal and antimicrobial properties: a review. Appl. Clay Sci. 198, 105823 (2020)

    Article  CAS  Google Scholar 

  7. A. Mokhtar, S. Abdelkrim, A. Djelad, A. Sardi, B. Boukoussa, M. Sassi, A. Bengueddach, Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr. Polym. 229, 115399 (2020). https://doi.org/10.1016/j.carbpol.2019.115399

    Article  PubMed  CAS  Google Scholar 

  8. R. Hariri, S. Dehghanpour, S. Sohrabi, Facile ultrasonic synthesis of zirconium based porphyrinic MOFs for enhanced adsorption performance towards anionic and mixed dye solutions. J. Inorg. Organomet. Polym. Mater. 30, 4720–4731 (2020). https://doi.org/10.1007/s10904-020-01704-5

    Article  CAS  Google Scholar 

  9. A. Djelad, A. Mokhtar, A. Khelifa, A. Bengueddach, M. Sassi, Alginate-whey an effective and green adsorbent for crystal violet removal: kinetic, thermodynamic and mechanism studies. Int. J. Biol. Macromol. 139, 944–954 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.068

    Article  PubMed  CAS  Google Scholar 

  10. S. Radoor, J. Karayil, A. Jayakumar, J. Parameswaranpillai, S. Siengchin, An efficient removal of malachite green dye from aqueous environment using ZSM-5 zeolite/polyvinyl alcohol/carboxymethyl cellulose/sodium alginate bio composite. J. Polym. Environ. 29, 2126–2139 (2021). https://doi.org/10.1007/s10924-020-02024-y

    Article  CAS  Google Scholar 

  11. S. Agnihotri, R. Singhal, Effect of sodium alginate content in acrylic acid/sodium humate/sodium alginate superabsorbent hydrogel on removal capacity of MB and CV dye by adsorption. J. Polym. Environ. 27, 372–385 (2019). https://doi.org/10.1007/s10924-018-1349-6

    Article  CAS  Google Scholar 

  12. D.A.M. Urrea, A.V.F. Gimenez, Y.E. Rodriguez, E.M. Contreras, Immobilization of horseradish peroxidase in Ca-alginate beads: evaluation of the enzyme leakage on the overall removal of an azo-dye and mathematical modeling. Process Saf. Environ. Prot. 156, 134–143 (2021). https://doi.org/10.1016/j.psep.2021.10.006

    Article  CAS  Google Scholar 

  13. L. Das, N. Saha, A. Ganguli, P. Das, A. Bhowal, C. Bhattacharjee, Calcium alginate–bentonite/activated biochar composite beads for removal of dye and Biodegradation of dye-loaded composite after use: synthesis, removal, mathematical modeling and biodegradation kinetics. Environ. Technol. Innov. 24, 101955 (2021). https://doi.org/10.1016/j.eti.2021.101955

    Article  CAS  Google Scholar 

  14. A. Jeyaseelan, N. Viswanathan, M. Naushad, C. Bathula, Fabrication of multi-functionalized graphene oxide doped alginate hybrid spheres for enhanced fluoride adsorption. J. Inorg. Organomet. Polym. Mater. 32, 216–228 (2022). https://doi.org/10.1007/s10904-021-02163-2

    Article  CAS  Google Scholar 

  15. L. Gong, Y. Kong, H. Wu, Y. Ge, Z. Li, Sodium alginate microspheres interspersed with modified lignin and bentonite (SA/ML-BT) as a green and highly effective adsorbent for batch and fixed-bed column adsorption of Hg (II). J. Inorg. Organomet. Polym. Mater. 31, 659–673 (2021). https://doi.org/10.1007/s10904-020-01757-6

    Article  CAS  Google Scholar 

  16. C. Ouwerx, N. Velings, M.M. Mestdagh, M.A.V. Axelos, Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym. Gels Netw. 6, 393–408 (1998). https://doi.org/10.1016/S0966-7822(98)00035-5

    Article  CAS  Google Scholar 

  17. F. Benali, B. Boukoussa, I. Ismail, M. Hachemaoui, J. Iqbal, I. Taha, Z. Cherifi, A. Mokhtar, One pot preparation of CeO2@Alginate composite beads for the catalytic reduction of MB dye: effect of cerium percentage. Surf. Interfaces 26, 101306 (2021). https://doi.org/10.1016/j.surfin.2021.101306

    Article  CAS  Google Scholar 

  18. S. Barreca, S. Orecchio, A. Pace, The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: isothermal and kinetic studies. Appl. Clay Sci. 99, 220–228 (2014). https://doi.org/10.1016/j.clay.2014.06.037

    Article  CAS  Google Scholar 

  19. A.A. Edathil, P. Pal, F. Banat, Alginate clay hybrid composite adsorbents for the reclamation of industrial lean methyldiethanolamine solutions. Appl. Clay Sci. 156, 213–223 (2018). https://doi.org/10.1016/j.clay.2018.02.015

    Article  CAS  Google Scholar 

  20. G. Uyar, H. Kaygusuz, F.B. Erim, Methylene blue removal by alginate–clay quasi-cryogel beads. React. Funct. Polym. 106, 1–7 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.07.001

    Article  CAS  Google Scholar 

  21. R. da Silva Fernandes, M.R. de Moura, G.M. Glenn, F.A. Aouada, Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. J. Mol. Liq. 265, 327–336 (2018). https://doi.org/10.1016/j.molliq.2018.06.005

    Article  CAS  Google Scholar 

  22. R.R. Pawar, P. Gupta, S.Y. Sawant, B. Shahmoradi, S.M. Lee, Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Int. J. Biol. Macromol. 114, 1315–1324 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.008

    Article  PubMed  CAS  Google Scholar 

  23. A. Ely, M. Baudu, M.O.S.A.O. Kankou, J.P. Basly, Copper and nitrophenol removal by low cost alginate/Mauritanian clay composite beads. Chem. Eng. J. 178, 168–174 (2011). https://doi.org/10.1016/j.cej.2011.10.040

    Article  CAS  Google Scholar 

  24. G.G. Almond, R.K. Harris, K.R. Franklin, A structural consideration of kanemite, octosilicate, magadiite and kenyaite. J. Mater. Chem. 7, 681–687 (1997). https://doi.org/10.1039/a606856a

    Article  CAS  Google Scholar 

  25. S. Benkhatou, A. Djelad, M. Sassi, M. Bouchekara, A. Bengueddach, Lead(II) removal from aqueous solutions by organic thiourea derivatives intercalated magadiite. Desalin. Water Treat. 57, 9383–9395 (2016). https://doi.org/10.1080/19443994.2015.1030701

    Article  CAS  Google Scholar 

  26. M. Ge, Z. Xi, C. Zhu, G. Liang, G. Hu, L. Jamal, S.M. Jahangir Alam, Preparation and characterization of magadiite-magnetite nanocomposite with its sorption performance analyses on removal of methylene blue from aqueous solutions. Polymers (Basel) 11, 2–15 (2019). https://doi.org/10.3390/polym11040607

    Article  CAS  Google Scholar 

  27. F. Kooli, Y. Liu, M. Abboudi, S. Rakass, H.O. Hassani, S.M. Ibrahim, R. Al-Faze, Application of organo-magadiites for the removal of eosin dye from aqueous solutions: thermal treatment and regeneration. Molecules 23, 2–22 (2018). https://doi.org/10.3390/molecules23092280

    Article  CAS  Google Scholar 

  28. A. Mokhtar, A. Djelad, M. Adjdir, M. Zahraoui, A. Bengueddach, M. Sassi, Intercalation of hydrophilic antibiotic into the interlayer space of the layered silicate magadiite. J. Mol. Struct. 1171, 190–195 (2018). https://doi.org/10.1016/j.molstruc.2018.06.014

    Article  CAS  Google Scholar 

  29. A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Biopolymer-layered polysilicate micro/nanocomposite based on chitosan intercalated in magadiite. Res. Chem. Intermed. 44, 6469–6478 (2018). https://doi.org/10.1007/s11164-018-3502-1

    Article  CAS  Google Scholar 

  30. A. Mokhtar, S. Abdelkrim, F. Zaoui, M. Sassi, B. Boukoussa, Improved stability of Starch@Layered-materials composite films for methylene blue dye adsorption in aqueous solution. J. Inorg. Organomet. Polym. Mater. 30, 3826–3831 (2020). https://doi.org/10.1007/s10904-020-01536-3

    Article  CAS  Google Scholar 

  31. K. Attar, D. Bouazza, H. Miloudi, A. Tayeb, A. Boos, A.M. Sastre, H. Demey, Cadmium removal by a low-cost magadiite-based material: characterization and sorption applications. J. Environ. Chem. Eng. 6, 5351–5360 (2018). https://doi.org/10.1016/j.jece.2018.08.014

    Article  CAS  Google Scholar 

  32. K. Attar, H. Demey, D. Bouazza, A.M. Sastre, Sorption and desorption studies of Pb(II) and Ni(II) from aqueous solutions by a new composite based on alginate and magadiite materials. Polymers (Basel) 11, 2–18 (2019). https://doi.org/10.3390/polym11020340

    Article  CAS  Google Scholar 

  33. A.H. Jawad, I.A. Mohammed, A.S. Abdulhameed, Tuning of fly ash loading into chitosan-ethylene glycol diglycidyl ether composite for enhanced removal of reactive red 120 dye: optimization using the Box-Behnken design. J. Polym. Environ. 28, 2720–2733 (2020). https://doi.org/10.1007/s10924-020-01804-w

    Article  CAS  Google Scholar 

  34. E. Gengec, U. Ozdemir, B. Ozbay, I. Ozbay, S. Veli, Optimizing dye adsorption onto a waste-derived (modified charcoal ash) adsorbent using box-Behnken and central composite design procedures. Water Air Soil Pollut. 224, 1751 (2013). https://doi.org/10.1007/s11270-013-1751-6

    Article  CAS  Google Scholar 

  35. T. Rathinavel, S. Ammashi, S. Marimuthu, Optimization of zinc oxide nanoparticles biosynthesis from Crateva adansonii using Box-Behnken design and its antimicrobial activity. Chem. Data Collect. 30, 100581 (2020). https://doi.org/10.1016/j.cdc.2020.100581

    Article  CAS  Google Scholar 

  36. M. Khajeh, Application of factorial design and Box-Behnken matrix in the optimization of a magnetic nanoparticles procedure for copper determination in water and biological samples. Biol. Trace Elem. Res. 135, 355–363 (2010). https://doi.org/10.1007/s12011-009-8509-4

    Article  PubMed  CAS  Google Scholar 

  37. S.M.M. Nataj, S.M. Alavi, G. Mazloom, Modeling and optimization of methane dry reforming over Ni–Cu/Al2O3 catalyst using Box-Behnken design. J. Energy Chem. 27, 1475–1488 (2018). https://doi.org/10.1016/j.jechem.2017.10.002

    Article  Google Scholar 

  38. X. Kan, X. Chen, Y. Shen, A.A. Lapkin, M. Kraft, C.H. Wang, Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst. Appl. Energy 242, 1549–1561 (2019). https://doi.org/10.1016/j.apenergy.2019.03.176

    Article  CAS  Google Scholar 

  39. Z. Li, D. Lu, X. Gao, Optimization of mixture proportions by statistical experimental design using response surface method: a review. J. Build. Eng. 36, 102101 (2021). https://doi.org/10.1016/j.jobe.2020.102101

    Article  Google Scholar 

  40. M. Manohar, J. Joseph, T. Selvaraj, Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. Int. J. Sci. Eng. Res. 4, 620–642 (2013)

    Google Scholar 

  41. A. Mokhtar, Z. Aouali, K. Medjhouda, A. Djelad, Structure and intercalation behavior of copper II on the layered sodium silicate magadiite material. Chem. Pap. 72, 39–50 (2017). https://doi.org/10.1007/s11696-017-0255-z

    Article  CAS  Google Scholar 

  42. B. Boukoussa, A. Mokhtar, A. El Guerdaoui, M. Hachemaoui, H. Ouachtak, S. Abdelkrim, A.A. Addi, S. Babou, B. Boudina, A. Bengueddach, R. Hamacha, Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: experimental and molecular dynamics study. J. Mol. Liq. 333, 115976 (2021). https://doi.org/10.1016/j.molliq.2021.115976

    Article  CAS  Google Scholar 

  43. J. Kazemi, V. Javanbakht, Alginate beads impregnated with magnetic Chitosan@Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution. Int. J. Biol. Macromol. 154, 1426–1437 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.024

    Article  PubMed  CAS  Google Scholar 

  44. J. Seader, E. Henley, D. Roper, Separation Process Principles (Wiley, New York, 1998)

    Google Scholar 

  45. M.K. Uddin, U. Baig, Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: characterisation, adsorption and response surface methodology. J. Clean. Prod. 211, 1141–1153 (2019). https://doi.org/10.1016/j.jclepro.2018.11.232

    Article  CAS  Google Scholar 

  46. P. Sundarrajan, P. Eswaran, A. Marimuthu, L.B. Subhadra, P. Kannaiyan, One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bull. Korean Chem. Soc. 33, 3218 (2012). https://doi.org/10.5012/bkcs.2012.33.10.3218

    Article  CAS  Google Scholar 

  47. Y. Chen, G. Yu, F. Li, C. Xie, G. Tian, Synthesis and visible-light photochromism of a new composite based on magadiite containing polytungstate. J. Mater. Chem. C 1, 3842–3850 (2013). https://doi.org/10.1039/c3tc30309h

    Article  CAS  Google Scholar 

  48. M.A. Rocha, F.J. Anaissi, H.E. Toma, K. Araki, H. Winnischofer, Preparation and characterization of colloidal Ni(OH)2/bentonite composites. Mater. Res. Bull. 44, 970–976 (2009). https://doi.org/10.1016/j.materresbull.2008.11.014

    Article  CAS  Google Scholar 

  49. A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Structural and antibacterial properties of HyZnxNa2–xSi14O9nH2O layered silicate compounds, prepared by ion-exchange reaction. J. Inorg. Organomet. Polym. Mater. 29, 1029–1038 (2019)

    Article  CAS  Google Scholar 

  50. G. Rajkumar, M. Rajkumar, V. Rajendran, S. Aravindan, Influence of Ag2O in physico-chemical properties and HAp precipitation on phosphate-based glasses. J. Am. Ceram. Soc. 94, 2918–2925 (2011). https://doi.org/10.1111/j.1551-2916.2011.04725.x

    Article  CAS  Google Scholar 

  51. G. Rajkumar, V. Rajendran, S. Aravindan, Role of MgO on the HAp forming ability in phosphate based glasses. Ceram. Int. 38, 3781–3790 (2012). https://doi.org/10.1016/j.ceramint.2012.01.026

    Article  CAS  Google Scholar 

  52. G. Rajkumar, S. Aravindan, V. Rajendran, Structural analysis of zirconia-doped calcium phosphate glasses. J. Non Cryst. Solids 356, 1432–1438 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.003

    Article  CAS  Google Scholar 

  53. T.K. Das, Q. Scott, A.N. Bezbaruah, Montmorillonite-iron crosslinked alginate beads for aqueous phosphate removal. Chemosphere 281, 130837 (2021). https://doi.org/10.1016/j.chemosphere.2021.130837

    Article  PubMed  CAS  Google Scholar 

  54. N. Mizukami, M. Tsujimura, K. Kuroda, M. Ogawa, Preparation and characterization of Eu-magadiite intercalation compounds. Clays Clay Miner. 50, 799–806 (2002). https://doi.org/10.1346/000986002762090335

    Article  CAS  Google Scholar 

  55. F. Tezcan, E. Günister, G. Özen, F.B. Erim, Biocomposite films based on alginate and organically modified clay. Int. J. Biol. Macromol. 50, 1165–1168 (2012). https://doi.org/10.1016/j.ijbiomac.2012.01.006

    Article  PubMed  CAS  Google Scholar 

  56. B. Boukoussa, A. Hakiki, S. Moulai, K. Chikh, D.E. Kherroub, L. Bouhadjar, D. Guedal, K. Messaoudi, F. Mokhtar, R. Hamacha, Adsorption behaviors of cationic and anionic dyes from aqueous solution on nanocomposite polypyrrole/SBA-15. J. Mater. Sci. 53, 7372–7386 (2018). https://doi.org/10.1007/s10853-018-2060-7

    Article  CAS  Google Scholar 

  57. M. Noori, M. Tahmasebpoor, R. Foroutan, Enhanced adsorption capacity of low-cost magnetic clinoptilolite powders/beads for the effective removal of methylene blue: adsorption and desorption studies. Mater. Chem. Phys. 278, 125655 (2022). https://doi.org/10.1016/j.matchemphys.2021.125655

    Article  CAS  Google Scholar 

  58. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  59. M. Benjelloun, Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq, S. Lairini, Recent advances in adsorption kinetic models: their application to dye types. Arab. J. Chem. 14, 103031 (2021). https://doi.org/10.1016/j.arabjc.2021.103031

    Article  CAS  Google Scholar 

  60. L.A. Rodrigues, M.L.C.P. da Silva, M.O. Alvarez-Mendes, A. Coutinho, R. Dos, G.P. Thim, Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 174, 49–57 (2011). https://doi.org/10.1016/j.cej.2011.08.027

    Article  CAS  Google Scholar 

  61. N. Yeddou, A. Bensmaili, Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture. Desalination 185, 183–191 (2005). https://doi.org/10.1016/j.desal.2005.04.053

    Article  CAS  Google Scholar 

  62. H. Le Man, S.K. Behera, H.S. Park, Optimization of operational parameters for ethanol production from korean food waste leachate. Int. J. Environ. Sci. Technol. 7, 157–164 (2010). https://doi.org/10.1007/BF03326127

    Article  Google Scholar 

  63. R. Venkataraghavan, R. Thiruchelvi, D. Sharmila, Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett-Burman design and response surface methodology. Heliyon 6, e05219 (2020). https://doi.org/10.1016/j.heliyon.2020.e05219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed, A.A. Al-Kahtani, Z.A. Alothman, Parametric optimization by Box-Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. J. Environ. Chem. Eng. 9, 105166 (2021). https://doi.org/10.1016/j.jece.2021.105166

    Article  CAS  Google Scholar 

  65. F.U. Nigiz, Synthesis of a novel graphene–kaolin–alginate adsorbent for dye removal, and optimization of the adsorption by response surface methodology. Res. Chem. Intermed. 45, 3739–3753 (2019). https://doi.org/10.1007/s11164-019-03818-z

    Article  CAS  Google Scholar 

  66. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 345, 469–473 (2010). https://doi.org/10.1016/j.carres.2009.12.010

    Article  PubMed  CAS  Google Scholar 

  67. L. Hou, P. Wu, Exploring the hydrogen-bond structures in sodium alginate through two-dimensional correlation infrared spectroscopy. Carbohydr. Polym. 205, 420–426 (2019). https://doi.org/10.1016/j.carbpol.2018.10.091

    Article  PubMed  CAS  Google Scholar 

  68. S.N.A. Rahim, A. Sulaiman, F. Hamzah, K.H.K. Hamid, M.N.M. Rodhi, M. Musa, N.A. Edama, Enzymes encapsulation within calcium alginate-clay beads: characterization and application for cassava slurry saccharification. Procedia Eng. 68, 411–417 (2013). https://doi.org/10.1016/j.proeng.2013.12.200

    Article  CAS  Google Scholar 

  69. B. Royer, N.F. Cardoso, E.C. Lima, T.R. Macedo, C. Airoldi, Sodic and acidic crystalline lamellar magadiite adsorbents for the removal of methylene blue from aqueous solutions: kinetic and equilibrium studies. Sep. Sci. Technol. 45, 129–141 (2010). https://doi.org/10.1080/01496390903256257

    Article  CAS  Google Scholar 

  70. X. Xu, B. Wang, H. Tang, Z. Jin, Y. Mao, T. Huang, Removal of phosphate from wastewater by modified bentonite entrapped in Ca-alginate beads. J. Environ. Manag. 260, 110130 (2020). https://doi.org/10.1016/j.jenvman.2020.110130

    Article  CAS  Google Scholar 

  71. A.C. Pradhan, A. Paul, G.R. Rao, Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3−MCM-41 for methylene blue remediation. J. Chem. Sci. 129, 381–395 (2017). https://doi.org/10.1007/s12039-017-1230-5

    Article  CAS  Google Scholar 

  72. M.A. Al-Ghouti, R.S. Al-Absi, Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 10, 15928 (2020). https://doi.org/10.1038/s41598-020-72996-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. S.J. Ajeel, A.A. Beddai, A.M.N. Almohaisen, Preparation of alginate/graphene oxide composite for methylene blue removal. Mater. Today Proc. 51, 289–297 (2022). https://doi.org/10.1016/j.matpr.2021.05.331

    Article  CAS  Google Scholar 

  74. M. Hachi, A. Chergui, A. Selatnia, H. Cabana, Valorization of the spent biomass of pleurotus mutilus immobilized as calcium alginate biobeads for methylene blue biosorption. Environ. Process. 3, 413–430 (2016). https://doi.org/10.1007/s40710-016-0157-z

    Article  Google Scholar 

  75. A.Ü. Metin, D. Doğan, M. Can, Novel magnetic gel beads based on ionically crosslinked sodium alginate and polyanetholesulfonic acid: synthesis and application for adsorption of cationic dyes. Mater. Chem. Phys. 256, 123659 (2020). https://doi.org/10.1016/j.matchemphys.2020.123659

    Article  CAS  Google Scholar 

  76. A. Nasrullah, A.H. Bhat, A. Naeem, M.H. Isa, M. Danish, High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int. J. Biol. Macromol. 107, 1792–1799 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.045

    Article  PubMed  CAS  Google Scholar 

  77. N. Belhouchat, H. Zaghouane-Boudiaf, C. Viseras, Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl. Clay Sci. 135, 9–15 (2017). https://doi.org/10.1016/j.clay.2016.08.031

    Article  CAS  Google Scholar 

  78. A. Mokhtar, F. Bennabi, S. Abdelkrim, A. Sardi, B. Boukoussa, A. Souna, A. Bengueddach, M. Sassi, Evaluation of intercalated layered materials as an antimicrobial and drug delivery system: a comparative study. J. Incl. Phenom. Macrocycl. Chem. 96, 353–364 (2020). https://doi.org/10.1007/s10847-020-00978-z

    Article  CAS  Google Scholar 

  79. H. Pouraboulghasem, M. Ghorbanpour, R. Shayegh, S. Lotfiman, Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites. J. Cent. South Univ. 23, 787–792 (2016). https://doi.org/10.1007/s11771-016-3124-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DGRSDT and the Ministry of Education and Scientific Research of Algeria for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, A., Boukoussa, B., Baba Ahmed, A. et al. Alginate@Layered Silicate Composite Beads: Dye Elimination, Box–Behnken Design Optimization and Antibacterial Property. J Inorg Organomet Polym 32, 2615–2633 (2022). https://doi.org/10.1007/s10904-022-02350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02350-9

Keywords

Navigation