Skip to main content
Log in

Reinforcing the Electrical and Mechanical Properties of the Reduced Graphene Oxide/PVA Blend using Fe2O3 Nanoparticles for Flexible Electronic Devices

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the current work, the electrical and mechanical properties of the reduced graphene oxide/PVA (RGO/PVA) blend have been reinforced using Fe2O3 nanoparticles for flexible electronic devices. Fe2O3 polymeric nanocomposites (PNCs) were prepared by the solution casting technique, while Fe2O3 NPs were synthesized via the hydrothermal procedure. TEM examination reveals that the prepared Fe2O3 NPs possess spherical shapes with an average size of 22 nm. FT-IR analysis of the prepared PNCs shows a clear structures’ variation in the absorption bands of the PNCs due to Fe2O3 NPs embedding as compared with the plain one. The electrical properties were performed using a four-probe stage under temperature sweeping. The DC electrical conductivity (σdc) of PVA is enhanced with four orders in magnitude via filling. A dynamic mechanical analyzer (DMA) was used to investigate the mechanical properties. DMA measurements analysis exhibits that both the storage modulus and stiffness of the plain PVA are twice enhanced due to Fe2O3 embedding as compared with those of the plain one. The glassy transition temperature (Tg) values of the prepared PNCs were determined from the loss factor (Tan δ) measurements. Tg values of the PNCs are shifted to larger temperatures relative to that of the pure PVA. The obtained findings recommend Fe2O3 PNCs as active candidates for new flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Badawi, G.A.M. Mersal, A.A. Shaltout, J. Boman, M. Alsawat, M.A. Amin, Exploring the structural and optical properties of FeS filled graphene/PVA blend for environmental-friendly applications. J. Polym. Res. 28(7), 270 (2021)

    Article  CAS  Google Scholar 

  2. A. Badawi, S.S. Alharthi, A.A. Alotaibi, M.G. Althobaiti, Investigation of the mechanical and electrical properties of SnS filled PVP/PVA polymeric composite blends. J. Polym. Res. 28(6), 205 (2021)

    Article  CAS  Google Scholar 

  3. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A 126(5), 335 (2020)

    Article  CAS  Google Scholar 

  4. S.S. Alharthi, A. Alzahrani, M.A.N. Razvi, A. Badawi, M.G. Althobaiti, Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. J. Inorg. Organomet. Polym Mater. 30(10), 3878–3885 (2020)

    Article  CAS  Google Scholar 

  5. R.J. Sengwa, P. Dhatarwal, Nanofiller concentration-dependent appreciably tailorable and multifunctional properties of (PVP/PVA)/SnO2 nanocomposites for advanced flexible device technologies. J. Mater. Sci.: Mater. Electron. 32(7), 9661–9674 (2021)

    CAS  Google Scholar 

  6. S.A.M. Issa, H.M.H. Zakaly, M. Pyshkina, M.Y.A. Mostafa, M. Rashad, T.S. Soliman, Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiat. Phys. Chem. 180, 109281 (2021)

    Article  CAS  Google Scholar 

  7. A. Badawi, Enhancement of the optical properties of PVP using Zn1-xSnxS for UV-region optical applications. Appl. Phys. A 127(1), 51 (2021)

    Article  CAS  Google Scholar 

  8. A. Badawi, S.S. Alharthi, Tailoring the photoluminescent and electrical properties of tin-doped ZnS@PVP polymeric composite films for LEDs applications. Superlattices and Microstructures 151 C, 106838 (2021)

  9. Z.K. Heiba, M.B. Mohamed, A. Badawi, A.A. Alhazime, The role of Cd0.9Mg0.1S nanofillers on the structural, optical, and dielectric properties of PVA/CMC polymeric blend. Chem. Phys. Lett. 770, 138460 (2021)

    Article  CAS  Google Scholar 

  10. S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, H.A. Saudi, A. Badawi, M. Pyshkina, G. Susoy, A.I. Elazaka, A. Ene, Exploring the FTIR, optical and nuclear radiation shielding properties of samarium-borate glass: A characterization through experimental and simulation methods. Nanomaterials 11(7), 1713 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S.A.M. Issa, H.M.H. Zakaly, A. Badawi, R. Elsaman, H.O. Tekin, A.A. Showahy, P.S. Anjana, D.R. Nath, N. Gopakumar, Y.B. Saddeek, An experimental investigation on structural, mechanical and physical properties of Strontium–Silicon Borate glass system through Bismuth-Aluminum substitution. Opt. Mater. 117, 111124 (2021)

    Article  CAS  Google Scholar 

  12. A. Badawi, S.S. Alharthi, H. Assaedi, A.N. Alharbi, M.G. Althobaiti, Cd0.9Co0.1S nanostructures concentration study on the structural and optical properties of SWCNTs/PVA blend. Chem. Phys. Lett. 775, 138701 (2021)

    Article  CAS  Google Scholar 

  13. A. Badawi, S.S. Alharthi, Controlling the optical and mechanical properties of polyvinyl alcohol using Ag2S semiconductor for environmentally friendly applications. Mater. Sci. Semiconduct. Process. 116, 105139 (2020)

    Article  CAS  Google Scholar 

  14. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, M.M. Osman, A.A. Albassam, G. Lakshminarayana, Improvement of the optical characteristics of PVA/PVP blend with different concentrations of SnS2/Fe. Journal of Vinyl and Additive Technology n/a (n/a)

  15. T.A. Taha, M.A.A. Alzara, Synthesis, thermal and dielectric performance of PVA-SrTiO3 polymer nanocomposites. J. Mol. Struct. 1238, 130401 (2021)

    Article  CAS  Google Scholar 

  16. M. Irfan, A. Manjunath, S.S. Mahesh, R. Somashekar, T. Demappa, Influence of NaF salt doping on electrical and optical properties of PVA/PVP polymer blend electrolyte films for battery application. J. Mater. Sci.: Mater. Electron. 32(5), 5520–5537 (2021)

    CAS  Google Scholar 

  17. Z.A. Alrowaili, M. Ezzeldien, M.I. Mohammed, I.S. Yahia, Design of a low-cost laser CUT-OFF filters using carmine dye-doped PVA polymeric composite films. Results in Physics 18, 103203 (2020)

    Article  Google Scholar 

  18. A. Badawi, Engineering the energy bandgap of lead cobalt sulfide quantum dots for visible light optoelectronics. J. Mater. Sci.: Mater. Electron. 31(20), 17726–17735 (2020)

    Google Scholar 

  19. S. Ningaraju, H.B. Ravikumar, Studies on electrical conductivity of PVA/graphite oxide nanocomposites: a free volume approach. J. Polym. Res. 24(1), 11 (2016)

    Article  CAS  Google Scholar 

  20. A. Badawi, N. Al-Hosiny, S. Abdallah, The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode. Superlattices Microstruct. 81, 88–96 (2015)

    Article  CAS  Google Scholar 

  21. N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS NANO 4(2), 887–894 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. D.-Y. Kim, B.N. Joshi, J.-J. Park, J.-G. Lee, Y.-H. Cha, T.-Y. Seong, S. In Noh, H.-J. Ahn, S. S. Al-Deyabe, S. S. Yoon, Graphene–titania films by supersonic kinetic spraying for enhanced performance of dye-sensitized solar cells. Ceramics International 40 (7, Part B), 11089–11097 (2014)

  23. S. Mahendia, G. Heena, U.P. Kandhol, S. Deshpande, Kumar, Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy. J. Mol. Struct. 1111, 46–54 (2016)

    Article  CAS  Google Scholar 

  24. M. Aslam, M.A. Kalyar, Z.A. Raza, Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Mater. Res. Express 3(10), 105036 (2016)

    Article  CAS  Google Scholar 

  25. B. Yalagala, S. Khandelwal, D.J.S. Badhulika, Wirelessly destructible MgO-PVP-Graphene composite based flexible transient memristor for security applications. Mater. Sci. Semiconduct. Process. 104, 104673 (2019)

    Article  CAS  Google Scholar 

  26. K.Y. Yasoda, S. Kumar, M.S. Kumar, K. Ghosh, S.K. Batabyal, Fabrication of MnS/GO/PANI nanocomposites on a highly conducting graphite electrode for supercapacitor application. Mater. Today Chem. 19, 100394 (2021)

    Article  CAS  Google Scholar 

  27. Y.-C. Cao, W. Wei, J. Liu, Q. You, F. Liu, Q. Lan, C. Zhang, C. Liu, J. Zhao, The preparation of graphene reinforced poly(vinyl alcohol) antibacterial nanocomposite thin film. Int. J. Polymer Sci. 2015, 407043 (2015)

  28. M.T. Rahman, M. Asadul Hoque, G.T. Rahman, M.A. Gafur, R.A. Khan, M.K. Hossain, Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results in Physics 13, 102264 (2019)

    Article  Google Scholar 

  29. M. Rashad, Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Opt. Mater. 105, 109857 (2020)

    Article  CAS  Google Scholar 

  30. R. Sivaranjani, A. Thayumanavan, S. Sriram, Photocatalytic activity of Zn-doped Fe2O3 nanoparticles: a combined experimental and theoretical study. Bull. Mater. Sci. 42(4), 185 (2019)

    Article  CAS  Google Scholar 

  31. A.M. El Sayed, W. M. Morsi, α-Fe2O3 /(PVA + PEG) Nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49(15), 5378–5387 (2014)

    Article  CAS  Google Scholar 

  32. F. Wang, X.F. Qin, Y.F. Meng, Z.L. Guo, L.X. Yang, Y.F. Ming, Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mater. Sci. Semiconduct. Process. 16(3), 802–806 (2013)

    Article  CAS  Google Scholar 

  33. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron. 28(15), 10877–10884 (2017)

    Article  CAS  Google Scholar 

  34. A. Badawi, N.Al Hosiny, Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films. Chin. Phys. B 24(10), 105101 (2015)

    Article  CAS  Google Scholar 

  35. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3 + ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B: Condens. Matter 538, 160–166 (2018)

    Article  CAS  Google Scholar 

  36. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8(1), 904–913 (2019)

    Article  CAS  Google Scholar 

  37. K. Sreekanth, T. Siddaiah, N.O. Gopal, Y. Madhava Kumar, C. Ramu, Thermal, structural, optical and electrical conductivity studies of pure and Fe3 + ions doped PVP films for semoconducting polymer devices. Mater. Res. Innovations 25(2), 95–103 (2021)

    Article  CAS  Google Scholar 

  38. R.F. Bhajantri, V. Ravindrachary, B. Poojary, A. Ismayil, V. Harisha, Crasta, Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polym. Eng. Sci. 49(5), 903–909 (2009)

    Article  CAS  Google Scholar 

  39. S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58(5), 641–649 (2004)

    Article  CAS  Google Scholar 

  40. S. Muntaz Begum, K. Ravindranadh, R.V.S.S.N. Ravikumar, M.C. Rao, Structural and luminescent properties of PVA capped ZnSe nanoparticles. Mater. Res. Innovations 22(1), 37–42 (2018)

    Article  CAS  Google Scholar 

  41. N.H.A. Ngadiman, A. Idris, M. Irfan, D. Kurniawan, N.M. Yusof, R. Nasiri, γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J. Mech. Behav. Biomed. Mater. 49, 90–104 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. M. Aslam, M.A. Kalyar, Z.A. Raza, Graphene oxides nanosheets mediation of poly(vinyl alcohol) films in tuning their structural and opto-mechanical attributes. J. Mater. Sci.: Mater. Electron. 28(18), 13401–13413 (2017)

    CAS  Google Scholar 

  43. A. Javed, N. Khan, S. Bashir, M. Ahmad, M. Bashir, Thickness dependent structural, electrical and optical properties of cubic SnS thin films. Mater. Chem. Phys. 246, 122831 (2020)

    Article  CAS  Google Scholar 

  44. A. Lassoued, Synthesis and characterization of Zn-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities. J. Mol. Struct. 1239, 130489 (2021)

    Article  CAS  Google Scholar 

  45. R. Kant, D. Kumar, V. Dutta, High coercivity α-Fe2O3 nanoparticles prepared by continuous spray pyrolysis. RSC Adv. 5(65), 52945–52951 (2015)

    Article  CAS  Google Scholar 

  46. A. Ibrahim, M.H. Abdel-Aziz, M.S. Zoromba, A.F. Al-Hossainy, Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Met. 238, 1–13 (2018)

    Article  CAS  Google Scholar 

  47. S.A. Mansour, A.H. Farha, M.F. Kotkata, Sol–gel synthesized co-doped anatase TiO2 nanoparticles: structural, optical, and magnetic characterization. J. Inorg. Organomet. Polym Mater. 29(4), 1375–1382 (2019)

    Article  CAS  Google Scholar 

  48. A. El Mragui, Y. Logvina, L. Pinto da Silva, Synthesis of Fe- and co-doped TiO(2) with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Materials 12(23), 3874 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  49. M.T. Rahman, M.A. Hoque, G.T. Rahman, M.M. Azmi, M.A. Gafur, R.A. Khan, M.K. Hossain, Fe2O3 nanoparticles dispersed unsaturated polyester resin based nanocomposites: effect of gamma radiation on mechanical properties. Radiat. Eff. Defects Solids 174(5–6), 480–493 (2019)

    Article  CAS  Google Scholar 

  50. A.M. Ibrahim, H.I. Alkhammash, Influence of extra-addition of sulfur on the optical, electrical, and photoconductivity of the borate glasses containing MoO3. Journal of Materials Science: Materials in Electronics, (2021)

  51. Z.K. Heiba, M.B. Mohamed, A. Badawi, Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere. Appl. Phys. A 127(3), 166 (2021)

    Article  CAS  Google Scholar 

  52. N. Ahad, E. Saion, E. Gharibshahi, Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J. Nanomaterials 2012, 857569 (2012)

    Article  CAS  Google Scholar 

  53. K. Sreekanth, T. Siddaiah, N.O. Gopal, Y. Madhava Kumar, C. Ramu, Optical and electrical conductivity studies of VO2 + doped polyvinyl pyrrolidone (PVP) polymer electrolytes. J. Science: Adv. Mater. Devices 4(2), 230–236 (2019)

    Google Scholar 

  54. Y. Khairy, M.I. Mohammed, H.I. Elsaeedy, I.S. Yahia, Optical and electrical properties of SnBr2-doped polyvinyl alcohol (PVA) polymeric solid electrolyte for electronic and optoelectronic applications. Optik 228, 166129 (2021)

    Article  CAS  Google Scholar 

  55. M. Ravi, S. Bhavani, K. Kiran Kumar, V.V.R. Narasimaha Rao, Investigations on electrical properties of PVP:KIO4 polymer electrolyte films. Solid State Sci. 19, 85–93 (2013)

    Article  CAS  Google Scholar 

  56. M. Watanabe, K. Sanui, N. Ogata, F. Inoue, T. Kobayashi, Z. Ohtaki, Temperature dependence of ionic conductivity of crosslinked poly(propylene oxide) films dissolving lithium salts and their interfacial charge transfer resistance in contact with lithium electrodes. Polym. J. 16(9), 711–716 (1984)

    Article  CAS  Google Scholar 

  57. S. Ramesh, A.H. Yahaya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153, 291–294 (2002)

    Article  Google Scholar 

  58. K. Sundaramahalingam, D. Vanitha, N. Nallamuthu, A. Manikandan, M. Muthuvinayagam, Electrical properties of lithium bromide poly ethylene oxide / poly vinyl pyrrolidone polymer blend elctrolyte. Phys. B: Condens. Matter 553, 120–126 (2019)

    Article  CAS  Google Scholar 

  59. N.M. Al-Hosiny, S. Abdallah, M.A.A. Moussa, A. Badawi, Optical, thermophysical and electrical characterization of PMMA (CdSe QDs) composite films. J. Polym. Res. 20(2), 1–8 (2013)

    Article  CAS  Google Scholar 

  60. A.M.A. Henaish, M. Mostafa, B.I. Salem, H.M.H. Zakaly, S.A.M. Issa, I.A. Weinstein, O.M. Hemeda, Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. J. Mater. Sci.: Mater. Electron. 31(22), 20210–20222 (2020)

    Google Scholar 

  61. E.A. Zaragoza-Contreras, C.A. Hernandez-Escobar, M.E. Mendoza-Duarte, S.G. Flores-Gallardo, R. Ibarra-Gomez, A. Marquez-Lucero, Thermal and mechanical analysis of silver/carbon nanoparticle[mdash]PMMA nanocomposites obtained by miniemulsion polymerization. Polym. J. 41(10), 816–821 (2009)

    Article  CAS  Google Scholar 

  62. R. Faria, J.C. Duncan, R.G. Brereton, Dynamic mechanical analysis and chemometrics for polymer identification. Polym. Test. 26(3), 402–412 (2007)

    Article  CAS  Google Scholar 

  63. W. Brostow, R. Chiu, I.M. Kalogeras, A. Vassilikou-Dova, Prediction of glass transition temperatures: Binary blends and copolymers. Mater. Lett. 62(17–18), 3152–3155 (2008)

    Article  CAS  Google Scholar 

  64. J. Rieger, The glass transition temperature Tg of polymers—Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym. Test. 20(2), 199–204 (2001)

    Article  CAS  Google Scholar 

  65. A.G. Leal, C. Marques, A. Frizera, M.J. Pontes, Dynamic mechanical analysis on a polyMethyl methacrylate (PMMA) polymer optical fiber. IEEE Sens. J. PP(99), 1–1 (2018)

    Google Scholar 

  66. K. Sewda, S.N. Maiti, Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym. Bull. 70, 2657–2674 (2013)

    Article  CAS  Google Scholar 

  67. A. Badawi, Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films. J. Mater. Sci. Mater. Electron. 26(6), 3450–3457 (2015)

    Article  CAS  Google Scholar 

  68. M. Dixit, S. Gupta, V. Mathur, K.S. Rathore, K. Sharma, N.S. Saxena, Study of glass transition temperature of PMMA and CdS-PMMA composite. Chalcogenide Lett. 6(3), 131–136 (2009)

    CAS  Google Scholar 

  69. N.G. Sahooa, S. Ranab, J.W. Chob, L. Li, S.H. Chana, Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837–867 (2010)

    Article  CAS  Google Scholar 

  70. Y.-L. Huang, C.-C.M. Ma, S.-M. Yuen, C.-Y. Chuang, H.-C. Kuan, C.-L. Chiang, S.-Y. Wu, Effect of maleic anhydride modified MWCNTs on the morphology and dynamic mechanical properties of its PMMA composites. Mater. Chem. Phys. 129(3), 1214–1220 (2011)

    Article  CAS  Google Scholar 

  71. L.A. Pothan, Z. Oommen, S. Thomas, Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 63(2), 283–293 (2003)

    Article  CAS  Google Scholar 

  72. A. Montazeri, K. Pourshamsian, M. Riazian, Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/epoxy composite using dynamic mechanical thermal analysis. Mater. Design 36(0), 408–414 (2012)

    Article  CAS  Google Scholar 

  73. V. Mathur, M. Dixit, K.S. Rathore, N.S. Saxena, K.B. Sharma, Morphological and mechanical characterization of a PMMA/CdS nanocomposite. Front. Chem. Sci. Eng. 5(2), 258–263 (2011)

    Article  CAS  Google Scholar 

  74. Y. Nakamura, E. Kariya, T. Fukuda, S. Fujii, K. Fujiwara, S. Hikasa, Glass transition behaviour of PMMA/PVA incompatible blend. Polym. Polym. Compos. 21(6), 367–376 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Taif University Researchers Supporting Project number (TURSP-2020/248), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A., Alharthi, S.S. Reinforcing the Electrical and Mechanical Properties of the Reduced Graphene Oxide/PVA Blend using Fe2O3 Nanoparticles for Flexible Electronic Devices. J Inorg Organomet Polym 32, 2345–2354 (2022). https://doi.org/10.1007/s10904-022-02289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02289-x

Keywords

Navigation