Skip to main content
Log in

Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optical and mechanical properties of different sizes and ratios of CdSe quantum dots (QDs)/PMMA nanocomposite films were investigated. Nanocomposite films of CdSe QDs (size = 3.75–5.23 nm)/PMMA (0.05 wt.%) were fabricated using casting technique. The optical properties of both colloidal CdSe QDs and CdSe QDs/PMMA nanocomposite films were recorded using UV–visible spectrophotometer. Red shifts in the absorption edges of CdSe/PMMA films have been seen compared with those of colloidal CdSe QDs. The mechanical properties including storage modulus, loss modulus, tan δ, and stiffness of the nanocomposite films as a function of temperature were recorded using a dynamic mechanical analyzer. An improvement in storage modulus, loss modulus, and stiffness have been observed for different sizes and ratios of CdSe QDs/PMMA as a function of temperature compared with those of pure PMMA film. The intensity of tan δ peak for pure PMMA film is larger than those of the nanocomposite films. The temperature at which the tan δ peak occurs is commonly known as the glass transition temperature (Tg). Tg of CdSe QDs/PMMA nanocomposite film shifts towards higher temperature side with respect to pure PMMA film from 91 to 110 °C as CdSe QDs size decreases from 3.75 to 5.23 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Sol. Energy 88, 137–143 (2013)

    Article  Google Scholar 

  2. P.K. Khanna, N. Singh, J. Lumin. 127, 474–482 (2007)

    Article  Google Scholar 

  3. O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Science 334, 1530–1533 (2011)

    Article  Google Scholar 

  4. V. Mathur, K. Sharma, Adv. Nanoparticles 2, 205–216 (2013)

    Article  Google Scholar 

  5. A. Badawi, N. Al-Hosiny, S. Abdallah, A. Merazga, H. Talaat, Mater. Sci. Semicond. Process. 26, 162–168 (2014)

    Article  Google Scholar 

  6. N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, H. Talaat, Mater. Sci. Semicond. Process. 26, 238–243 (2014)

    Article  Google Scholar 

  7. K. Surana, P.K. Singh, H.-W. Rhee, B. Bhattacharya, J. Ind. Eng. Chem. 20, 4188–4193 (2014)

    Article  Google Scholar 

  8. M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, Renew. Sustain. Energy Rev. 37, 397–407 (2014)

    Article  Google Scholar 

  9. Z. El-Qahtani, A. Badawi, K. Easawi, N. Al-Hosiny, S. Abdallah, Mater. Sci. Semicond. Process. 20, 68–73 (2014)

    Article  Google Scholar 

  10. J. Wu, D. Shao, V.G. Dorogan, A.Z. Li, S. Li, E.A. DeCuir, M.O. Manasreh, Z.M. Wang, Y.I. Mazur, G.J. Salamo, Nano Lett. 10, 1512–1516 (2010)

    Article  Google Scholar 

  11. J. Wu, Z.M. Wang, V.G. Dorogan, S. Li, Y.I. Mazur, G.J. Salamo, Nanoscale 3, 1485–1488 (2011)

    Article  Google Scholar 

  12. N.M. Al-Hosiny, S. Abdallah, M.A.A. Moussa, A. Badawi, J. Polym. Res. 20, 1–8 (2013)

    Article  Google Scholar 

  13. N.G. Sahooa, S. Ranab, J.W. Chob, L. Li, S.H. Chana, Prog. Polym. Sci. 35, 837–867 (2010)

    Article  Google Scholar 

  14. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990)

    Article  Google Scholar 

  15. A. Rubio-Ríos, B. Aguilar-Castillo, S. Flores-Gallardo, C. Hernández-Escobar, E. Zaragoza-Contreras, Z. Zhao, M. Carpenter, J. Polym. Res. 19, 1–7 (2012)

    Article  Google Scholar 

  16. Z. Wang, X. Yang, J. Wei, M. Xu, L. Tong, R. Zhao, X. Liu, J. Polym. Res. 19, 1–8 (2012)

    Article  Google Scholar 

  17. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102–1105 (2000)

    Article  Google Scholar 

  18. C.G. Ma, Y.R. Wang, Y.J. Yu, Plastics. Rubber Composit. 39, 49–53 (2010)

    Article  Google Scholar 

  19. J. Al-Osaimi, N. Al-Hosiny, S. Abdallah, A. Badawi, Iran. Polym. J. 23, 437–443 (2014)

    Article  Google Scholar 

  20. C. Cheng, S. Wang, X. Cheng, Opt. Laser Technol. 44, 1298–1300 (2012)

    Article  Google Scholar 

  21. B.J. Ash, R.W. Siegel, L.S. Schadler, J. Polym. Sci. Part B Polym. Phys. 42, 4371–4383 (2004)

    Article  Google Scholar 

  22. W. Brostow, R. Chiu, I.M. Kalogeras, A. Vassilikou-Dova, Mater. Lett. 62, 3152–3155 (2008)

    Article  Google Scholar 

  23. R. Faria, J.C. Duncan, R.G. Brereton, Polym. Test. 26, 402–412 (2007)

    Article  Google Scholar 

  24. S.I.J. Wilberforce, S.M. Best, R.E. Cameron, J. Mater. Sci. Mater. Med. 21, 3085–3093 (2010)

    Article  Google Scholar 

  25. J. Rieger, Polym. Test. 20, 199–204 (2001)

    Article  Google Scholar 

  26. P.S. Khiew, N.M. Huang, S. Radiman, S. Ahmad, Mater. Lett. 58, 762–767 (2004)

    Article  Google Scholar 

  27. A. Montazeri, K. Pourshamsian, M. Riazian, Mater. Des. 36, 408–414 (2012)

    Article  Google Scholar 

  28. V. Mathur, M. Dixit, K.S. Rathore, N.S. Saxena, K.B. Sharma, Front. Chem. Sci. Eng. 5, 258–263 (2011)

    Article  Google Scholar 

  29. Y.-L. Huang, C.-C.M. Ma, S.-M. Yuen, C.-Y. Chuang, H.-C. Kuan, C.-L. Chiang, S.-Y. Wu, Mater. Chem. Phys. 129, 1214–1220 (2011)

    Article  Google Scholar 

  30. H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F.Z. Arrakhiz, A. Qaiss, Mater. Des. 51, 780–788 (2013)

    Article  Google Scholar 

  31. S.D. Sartale, C.D. Lokhande, Mater. Chem. Phys. 72, 101–104 (2001)

    Article  Google Scholar 

  32. W. Brostow, H.E.H. Lobland, M. Narkis, Polym. Bull. 67, 1697–1707 (2011)

    Article  Google Scholar 

  33. M. Dixit, S. Gupta, V. Mathur, K.S. Rathore, K. Sharma, N.S. Saxena, Chalcogenide Lett. 6, 131–136 (2009)

    Google Scholar 

  34. K. Sewda, S.N. Maiti, Polym. Bull. 70, 2657–2674 (2013)

    Article  Google Scholar 

  35. A. Badawi, N. Al-Hosiny, S. Abdallah, H. Talaat, Mater. Sci. Pol. 31, 6–13 (2013)

    Article  Google Scholar 

  36. T.P. Mthethwa, M.J. Moloto, A.D. Vries, K.P. Matabola, Mater. Res. Bull. 46, 569–575 (2011)

    Article  Google Scholar 

  37. H.-J. Kim, D.-J. Kim, S.S. Rao, A.D. Savariraj, K. Soo-Kyoung, M.-K. Son, C.V.V.M. Gopi, K. Prabakar, Electrochim. Acta 127, 427–432 (2014)

    Article  Google Scholar 

  38. C.V.V.M. Gopi, S. Srinivasa Rao, S.K. Kim, D. Punnoose, H.J. Kim, J. Power Sources 275, 547–556 (2015)

    Article  Google Scholar 

  39. E. Logakis, C. Pandis, P. Pissis, J. Pionteck, P. Pötschke, Composit. Sci. Technol. 71, 854–862 (2011)

    Article  Google Scholar 

  40. A.L. Martínez-Hernández, C. Velasco-Santos, V.M. Castaño, Curr. Nanosci. 6, 12–39 (2010)

    Article  Google Scholar 

  41. C. Velasco-Santos, A.L. Mart´ınez-Hern´andez, F. Fisher, R. Ruoff, V.M. Casta˜no, J. Phys. D Appl. Phys. 36, 1423–1428 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The author wish to thank Taif University for the financial support (Grant Research No. 1/435/3524). I sincerely acknowledge helpful and useful discussion with Professor Hassan Talaat (Professor of Physics) at Ain Shams University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A. Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films. J Mater Sci: Mater Electron 26, 3450–3457 (2015). https://doi.org/10.1007/s10854-015-2854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2854-1

Keywords

Navigation