Skip to main content
Log in

Architectural View of Flexible Aliphatic –OH Group Coordinated Hemi-Directed Pb(II)-Salen Coordination Polymer: Synthesis, Crystal Structure, Spectroscopic Insights, Supramolecular Topographies, and DFT Perspective

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

We serendipitously designed one novel 1D hetero-binuclear Zn(II)-Pb(II) coordination polymer, namely [(Zn)(Pb)(L)(η1–NCS)(η1–SCN)]n (1) from Salen ligand (H3L) in the presence of NaSCN. The complex was structurally characterized by elemental, IR, Raman, NMR spectroscopy, Scanning electron microscope, Powder X-ray diffraction, and Single-crystal X-ray diffraction (SCXRD). The heteronuclear complex crystallizes in the monoclinic space group P21/c with Z = 4. The asymmetric unit contains one deprotonated ligand (L2−). SCXRD comprises metal ions of Zn(II) and Pb(II), fulfilled perfect square bipyramidal and Hemi-directed coordination spheres. We accomplished DFT by three different level basis set B3LYP, HF, and M062X with Lanl2dz to delineate Frontier molecular orbital, the Global chemical parameters, and the molecular electrostatic potential. Hirshfeld surface carried out non-covalent interactions like hydrogen bonding. This bonding considered the possible supramolecular topographies due to the flexible aliphatic –OH group. Besides H/H, C/H/H/C and N/H/H/N also dominated the supramolecular network. Van der Waals interactions appear to be more prevalent in the molecular packaging of the complex. Molecular docking finds the plausible binding process by implanting the complex into the active site of the crystal structures of estrogen receptor protein, the VEGFR kinase (liver cancer) protein, and the allosteric Eya2 phosphatase inhibitor (lung cancer) protein. The essential binding process is the polar and hydrophobic exchanges, π–π interaction, hydrogen bonds, and halogen. Advanced Protein–Ligand Interaction Profiler crucially examined the interplay of the protein with complex. Finally, NLO parameters polarizability (α) and hyperpolarizability (β) calculated the importance of nonlinear optical effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Zhao, J. Su, J. Zhang, J.Y. Wu, Y.P. Tian, Acta Crystallogr. C 71, 799–803 (2015)

    Article  CAS  Google Scholar 

  2. D. Zhao, D.J. Timmons, D. Yuan, H.C. Zhou, Acc. Chem. Res. 44, 123–133 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. L.R. Mingabudinova, V.V. Vinogradov, V.A. Milichko, E. Hey-Hawkins, A.V. Vinogradov, Chem. Soc. Rev. 45, 5408–5431 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. O.R. Evans, W. Lin, Acc. Chem. Res. 35, 511–522 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. J.A. Sheikh, A. Clearfield, Inorg. Chem. 55, 8254–8256 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. J.M. Frost, K.L.M. Harriman, M. Murugesu, Chem. Sci. 7, 2470–2491 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Z.G. Gu, C.H. Zhan, J. Zhang, X.H. Bu, Chem. Soc. Rev. 45, 3122–3144 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. S.S. Zhao, J. Yang, Y.Y. Liu, J.F. Ma, Inorg. Chem. 55, 2261–2273 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. A. Douvali, A.C. Tsipis, S.V. Eliseeva, S. Petoud, G.S. Papaefstathiou, C.D. Malliakas, I. Papadas, G.S. Armatas, I. Margiolaki, M.G. Kanatzidis, T. Lazarides, M.J. Manos, Angew. Chem. Int. Ed. 54, 1651–1656 (2015)

    Article  CAS  Google Scholar 

  10. C.J. Doonan, C.J. Sumby, CrystEngComm 19, 4044–4048 (2017)

    Article  CAS  Google Scholar 

  11. I. Nath, J. Chakraborty, F. Verpoort, Chem. Soc. Rev. 45, 4127–4170 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. R.R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, Chem. Commun. 52, 4764–4767 (2016)

    Article  CAS  Google Scholar 

  13. J. Tang, Y. Yamauchi, Nat. Chem. 8, 638–639 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. W. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras, J. Kim, J.H. Kim, S. Wang, J. Liu, J.S. Jiang, Y. Yamauchi, M. Hu, Chem. Sci. 8, 3538–3546 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano 11, 5293–5308 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. R. Robson, in Comprehensive Supramolecular Chemistry, vol. 6, ed. by J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vogtle, R.B. Toda (Pergamon, Oxford, 1996), p. 733

    Google Scholar 

  17. J.-P. Sauvage, Transition Metals in Supramolecular Chemistry, Perspectives in Supramolecular Chemistry, 5th edn. (Wiley, London, 1999)

    Book  Google Scholar 

  18. D. Braga, F. Grepioni, A.G. Orpen, Crystal Engineering: From Molecules and Crystals to Materials (Kluwer Academic, Dordrecht, The Netherlands, 1999)

    Book  Google Scholar 

  19. F. Nouar, J.F. Eubank, T. Bousquet, L. Wojtas, M.J. Zaworotko, M. Eddaoudi, J. Am. Chem. Soc. 130, 1833 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. F.G. Vogt, J.S. Clawson, M. Strohmeier, A.J. Edwards, T.N. Pham, S.A. Watson, Cryst. Growth Des. 9, 921 (2009)

    Article  CAS  Google Scholar 

  21. S. Shimomura, M. Higuchi, R. Matsuda, K. Yoneda, Y. Hijikata, Y. Kubota, Y. Mita, J. Kim, M. Takata, S. Kitagawa, Nat. Chem. 2, 633 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. M. Andruh, D.G. Branzea, R. Gheorghe, A.M. Madalan, CrystEngComm 11, 2571–2584 (2009)

    Article  Google Scholar 

  23. M. Chen, H. Zhao, C.S. Liu, X. Wang, H.Z. Shi, M. Du, Chem. Commun. 51, 6014–6017 (2015)

    Article  CAS  Google Scholar 

  24. C.E. Housecroft, Dalton Trans. 43, 6594–6604 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. A. Hazari, L.K. Das, A. Bauza, A. Frontera, A. Ghosh, Dalton Trans. 43, 8007–8015 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. D.J. Majumdar, S. Dey, A. Kumari, T.K. Pal, K. Bankura, D. Mishra, Spectrochim. Acta. A 254, 119612 (2021)

    Article  CAS  Google Scholar 

  27. D.J. Majumdar, D. Das, S.S. Sreejith, S. Nag, S. Dey, S. Mondal, K. Bankura, D. Mishra, Inorg. Chim. Acta. 496, 119069 (2019)

    Article  CAS  Google Scholar 

  28. A. Jana, S. Majumder, L. Carrella, M. Nayak, T. Weyhermueller, S. Dutta, D. Schollmeyer, E. Rentschler, R. Koner, S. Mohanta, Inorg. Chem. 49, 9012 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. M. Nayak, R. Koner, H. Stoeckli-Evans, S. Mohanta, Cryst. Growth Des. 5, 1907 (2005)

    Article  CAS  Google Scholar 

  30. S. Roy, M.G.B. Drew, A. Bauzá, A. Frontera, S. Chattopadhyay, Dalton Trans. 46, 5384–5397 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. S. Roy, A. Bhattacharyya, S. Purkait, A. Bauzá, A. Frontera, S. Chattopadhyay, Dalton Trans. 45, 15048–15059 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. A. Bhattacharyya, S. Roy, J. Chakraborty, S. Chattopadhyay, Polyhedron 112, 109–117 (2016)

    Article  CAS  Google Scholar 

  33. P. Bhowmik, S. Jana, P.P. Jana, K. Harms, S. Chattopadhyay, Inorg. Chim. Acta. 390, 53–60 (2012)

    Article  CAS  Google Scholar 

  34. P. Bhowmik, S. Jana, P.P. Jana, K. Harms, S. Chattopadhyay, Inorg. Chem. Commun. 18, 50–56 (2012)

    Article  CAS  Google Scholar 

  35. V. Vieru, T.D. Pasatoiu, L. Ungur, E. Suturina, A.M. Madalan, C. Duhayon, J.-P. Sutter, M. Andruh, L.F. Chibotaru, Inorg. Chem. 55, 12158 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. M.-J. Liu, K.-Q. Hu, C.-M. Liu, A.-L. Cui, H.-Z. Kou, New J. Chem. 40, 8643 (2016)

    Article  CAS  Google Scholar 

  37. J. A. Thomas, in: J.L. Atwood, J.W. Steed (Eds.), Encyclopedia of Supramolecular Chemistry, CRC Press, Boca Raton, FL, pp. 1248 (2004)

  38. Y. Sui, D.-P. Li, X.-H. Zhou, T. Wu, X.-Z. You, Inorg. Chem. 49, 1286 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. S. Hazra, R. Koner, M. Nayak, H.A. Sparkes, J.A.K. Howard, S. Mohanta, Cryst. Growth Des. 9, 3603 (2009)

    Article  CAS  Google Scholar 

  40. S. Sasmal, S. Majumder, S. Hazra, H.A. Sparkes, J.A.K. Howard, S. Mohanta, CrystEngComm 12, 4131 (2010)

    Article  CAS  Google Scholar 

  41. S. Bhattacharya, S. Mondal, S. Sasmal, H.A. Sparkes, J.A.K. Howard, M. Nayak, S. Mohanta, CrystEngComm 13, 1029 (2011)

    Article  CAS  Google Scholar 

  42. D.L. Reger, T.D. Wright, C.A. Little, J.J.S. Lamba, M.D. Smith, Inorg. Chem. 40, 3810–3814 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. H. Fleischer, D. Schollmeyer, Inorg. Chem. 43, 5529–5536 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. A. Morsali, A.R. Mahjoub, Helv. Chim. Acta. 87, 2717–2722 (2004)

    Article  CAS  Google Scholar 

  45. A. Olvera, G. Shi, H. Djieutedjeu, A. Page, C. Uher, E. Kioupakis, P.F.P. Poudeu, Inorg. Chem. 54, 746–755 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. R.J. Gillespie, R.S. Nyholm, Q. Rev. Chem. Soc. 11, 339–380 (1957)

    Article  CAS  Google Scholar 

  47. C.A. Randall, A.S. Bhalla, T.R. Shrout, L.E. Cross, J. Mater. Res. 5, 829–834 (1990)

    Article  CAS  Google Scholar 

  48. F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater. 23, 1695–1715 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. L. Zhang, Y.-Y. Qin, Z.-J. Li, Q.-P. Lin, J.-K. Cheng, J. Zhang, Y.-G. Yao, Inorg. Chem. 47, 8286–8293 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. G. Mahmoudi, A. Bauzá, A. Frontera, Dalton Trans. 45, 4965–4969 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. M.S. Gargari, V. Stilinović, A. Bauzá, A. Frontera, P. McArdle, D.V. Derveer, S.W. Ng, G. Mahmoudi, Chem. Eur. J. 21, 17951–17958 (2015)

    Article  Google Scholar 

  52. K.S. Pitzer, Relativistic effects on chemical properties. Acc. Chem. Res. 12, 271–276 (1979)

    Article  CAS  Google Scholar 

  53. P. Pyykkö, J. P. Desclaux, Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276−281 (1979)

  54. P. Pyykkö, Relativistic effects in structural chemistry. Chem. Rev. 88, 563−594 (1988)

  55. J. R. Thompson, D. Snider, J. E. C. Wren, S. Kroeker, V. E. Williams, D. B. Lenzoff, Eur. J. Inorg. Chem. 88–98 (2017)

  56. R.L. Davidovich, V. Stavila, D.V. Marinin, E.I. Voit, K.H. Whitmire, Coord. Chem. Rev. 253, 1316–1352 (2009)

    Article  CAS  Google Scholar 

  57. D.L. Reger, M.F. Huff, A.L. Rheingold, B.S. Haggert, J. Am. Chem. Soc. 114, 579–584 (1992)

    Article  CAS  Google Scholar 

  58. L.E. Orgel, Spectra of transition-metal complexes. J. Chem. Phys. 23, 1004–1014 (1955)

    Article  CAS  Google Scholar 

  59. M.B. Gürdere, Y. Budak, U.M. Kocyigit, P. Taslimi, B. Tüzün, M. Ceylan, In Silico Pharmacol. 9(1), 1–11 (2021)

    Article  Google Scholar 

  60. M.T. Riaz, M. Yaqub, Z. Shafiq, A. Ashraf, M. Khalid, P. Taslimi, I. Gulçin, Bioorg. Chem. 114, 105069 (2021)

    Article  CAS  PubMed  Google Scholar 

  61. Y. Sheena Mary, Y. Shyma Mary, S. Armaković, S. J. Armaković, B. Narayana, J. Biomol. Struct. Dyn. 1–11 (2020)

  62. Y.S. Mary, C.Y. Panicker, M. Sapnakumari, B. Narayana, B.K. Sarojini, A.A. Al-Saadi, C. Van Alsenoy, J.A. War, H.K. Fun, Spectrochim. Acta. A 138, 529–538 (2015)

    Article  CAS  Google Scholar 

  63. P.G. Lacroix, S. Di Bella, I. Ledoux, Chem. Mater. 8(2), 541–554 (1996)

    Article  CAS  Google Scholar 

  64. D.J. Majumdar, B. Tüzün, T.K. Pal, R.V. Saini, K. Bankura, D. Mishra, Polyhedron 210, 115504 (2021)

    Article  CAS  Google Scholar 

  65. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision D.01. Gaussian Inc, Wallingford CT, (2009)

  66. L.K. Ojha, B. Tüzün, J. Bhawsar, J. Bio Tribo Corros. 6(2), 1–10 (2020)

    Article  Google Scholar 

  67. B. Tüzün, E. Saripinar, J. Iran. Chem. Soc. 17(5), 985–1000 (2020)

    Article  Google Scholar 

  68. D.W. Ritchie, V. Venkatraman, Bioinformatics 26(19), 2398–2405 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. A. T. Bilgiçli, H. G. Bilgicli, C. Hepokur, B. Tüzün, A. Günsel, M. Zengin, M. N. Yarasir, Appl. Organomet. Chem. e6242 (2021)

  70. U. M. Koçyiğit, P. Taslimi, B. Tüzün, H. Yakan, H. Muğlu, E. Güzel, E. (2020). J. Biomol. Struct. Dyn. 1–11 (2020)

  71. G. M. Sheldrick, SADABS, a software for empirical absorption correction, Ver.2.05. University of Göttingen, Göttingen (2002)

  72. SMART & SAINT Software Reference manuals Version 6.45. Bruker Analytical X-ray Systems, Inc., Madison (2003)

  73. SHELXTL Reference Manual Ver. 6.1. Bruker Analytical X-ray Systems, Inc., Madison (2000)

  74. G. M. Sheldrick, SHELXTL, a software for empirical absorption correction Ver.6.12. Bruker AXS Inc., Madison (2001)

  75. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2, OLEX2: a complete structure solution, refinement, and analysis program. J. Appl. Crystallog. 42, 339–341 (2009)

    Article  CAS  Google Scholar 

  76. M. Dolai, T. Mistri, A. Panja, M. Ali, Inorg. Chim. Acta. 399, 95–104 (2013)

    Article  CAS  Google Scholar 

  77. P.K. Bhaumik, A. Banerjee, T. Dutta, S. Chatterjee, A. Frontera, S. Chattopadhyay, CrystEngComm 22, 2970–2977 (2020)

    Article  CAS  Google Scholar 

  78. A. Hazari, L.K. Das, A. Bauzá, A. Frontera, A. Ghosh, Dalton Trans. 45, 5730–5740 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. S. Roy, A. Dey, M.G.B. Drew, P.P. Ray, S. Chattopadhyay, New J. Chem. 43, 5020–5031 (2019)

    Article  CAS  Google Scholar 

  80. S. Dey, S. Sil, B. Dutta, K. Naskar, S. Maity, P.P. Ray, C. Sinha, ACS Omega 22(4), 19959–19968 (2019)

    Article  Google Scholar 

  81. S. Mirdya, S. Roy, S. Chatterjee, A. Bauza, A. Frontera, S. Chattopadhyay, Cryst. Growth Des. 19, 5869–5881 (2019)

    Article  CAS  Google Scholar 

  82. S. Mirdya, A. Frontera, S. Chattopadhyay, CrystEngComm 21, 6859–6868 (2019)

    Article  CAS  Google Scholar 

  83. D.J. Majumdar, Y. Agrawal, R. Thomas, Z. Ullah, M.K. Santra, S. Das, T.K. Pal, K. Bankura, D. Mishra, Appl. Organomet. Chem. 34, e5269 (2020)

    Article  CAS  Google Scholar 

  84. D.J. Majumdar, T.K. Pal, S.A. Sakib, S. Das, K. Bankura, D. Mishra, Inorg. Chem. Commun. 128, 108609 (2021)

    Article  CAS  Google Scholar 

  85. I. Mondal, S. Chatterjee, S. Chattopadhyay, Polyhedron 190, 114735 (2020)

    Article  CAS  Google Scholar 

  86. M. Maiti, S. Thakurta, D. Sadhukhan, G. Pilet, G.M. Rosair, A. Nonat, L.J. Charbonniere, S. Mitra, Polyhedron 65, 6–15 (2013)

    Article  CAS  Google Scholar 

  87. A.B.P. Lever, Inorganic Spectroscopy, 2nd edn. (Elsevier, New York, 1984)

    Google Scholar 

  88. L.K. Das, M.G.B. Drew, A. Ghosh, Inorg. Chim. Acta. 394, 247–254 (2013)

    Article  CAS  Google Scholar 

  89. D.K. Mishra, U.K. Singha, A. Das, S. Dutta, P. Kar, A. Chakraborty, A. Sen, B. Sinha, J. Coord. Chem. 71, 2165–2182 (2018)

    Article  CAS  Google Scholar 

  90. D. Sadhukhan, A. Ray, G. Rosair, L. Charbonnière, S. Mitra, BCSJ 84, 211–217 (2011)

    Article  CAS  Google Scholar 

  91. M. Amirnasr, K.J. Schenk, M. Salavati, S. Dehghanpour, A. Taeb, A. Tadjarodi, J. Coord. Chem. 56, 231–243 (2003)

    Article  CAS  Google Scholar 

  92. R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963)

    Article  CAS  Google Scholar 

  93. S. Roy, M.G.B. Drew, A. Bauza, A. Frontera, S. Chattopadhyay, New J. Chem. 42, 6062–6076 (2018)

    Article  CAS  Google Scholar 

  94. S. Ghosh, P. Chopra, S. Wategaonkar, Phys. Chem. Chem. Phys. 22(31), 17482–17493 (2020)

    Article  CAS  PubMed  Google Scholar 

  95. A. W. Addison, T. N. Rao, J. Reedijk, J. V. Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1349−1356 (1984)

  96. J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Chem. Commun. 37, 3814–3816 (2007)

    Article  Google Scholar 

  97. C.F. Mackenzie, P.R. Spackman, D. Jayatilaka, M.A. Packman, IUCrJ 4(5), 575–587 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. N. Abad, H. Lgaz, Z. Atioglu, M. Akkurt, J.T. Mague, I.H. Ali, Y. Ramli, J. Mol. Struct. 1221, 128727 (2020)

    Article  CAS  Google Scholar 

  99. M.A. Spackman, J.J. McKinnon, D. Jayatilaka, CrystEngComm 10(4), 377–388 (2008)

    CAS  Google Scholar 

  100. D. Jayatilaka, D. J. Grimwood, A. Lee, A. Lemay, A. J. Russel, C. Taylor, A. Whitton, TONTO-A System for Computational Chemistry (2005)

  101. N. Kanagathara, F. MaryAnjalin, V. Ragavendran, D. Dhanasekaran, R. Usha, R.G.S. Rao, M.K. Marchewka, J. Mol. Struct. 1223, 128965 (2021)

    Article  CAS  Google Scholar 

  102. E. Önem, B. Tüzün, S. Akkoç, J. Biomol. Struct. Dyn. 1–12 (2021)

  103. B. Tüzün, J. Bhawsar, Arab. J. Chem. 14(2), 102927 (2021)

    Article  Google Scholar 

  104. A. Aktaş, A., B. Tüzün, R. Aslan, K. Sayin, H. Ataseven, J. Biomol. Struct. Dyn. 1–11 (2020)

  105. A. Poustforoosh, H. Hashemipour, B. Tüzün, A. Pardakhty, M. Mehrabani, M.H. Nematollahi, Biophys. Chem. 272, 106564 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Adasme et al. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. NAR (2021)

  107. S.D. Bella, I.P. Oliveri, A. Colombo, C. Dragonetti, S. Righettob, D. Roberto, Dalton Trans. 41, 7013 (2012)

    Article  PubMed  Google Scholar 

  108. L. Chen, C. Yan, B. Du, K. Wu, L.-Z. Zhang, S.-Y. Yin, M. Pan, Inorg. Chem. Commun. 47, 13–16 (2014)

    Article  CAS  Google Scholar 

  109. A. Fashina, T. Nyokong, J. Lumin. 167, 71–79 (2015)

    Article  CAS  Google Scholar 

  110. Y. Tang, M. Kong, X. Tian, J. Wang, Q. Xie, A. Wang, Q. Zhang, H. Zhou, J. Wua, Y. Tiana, J. Matter. Chem. B. 5, 6348–6355 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work did not receive any specific grant from funding agencies in public, commercial or non-profit sectors. This research was made possible by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhrubajyoti Majumdar or Kalipada Bankura.

Ethics declarations

Conflict of interest

The authors declare no competing interest or personal relationships that could have appeared to impact the work reported in this paper.

Appendix A: Supplementary Material

CCDC 2073508 contains the supplementary crystallographic data for 1. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+ 44) 1223–336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, D., Tüzün, B., Pal, T.K. et al. Architectural View of Flexible Aliphatic –OH Group Coordinated Hemi-Directed Pb(II)-Salen Coordination Polymer: Synthesis, Crystal Structure, Spectroscopic Insights, Supramolecular Topographies, and DFT Perspective. J Inorg Organomet Polym 32, 1159–1176 (2022). https://doi.org/10.1007/s10904-021-02194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02194-9

Keywords

Navigation