Skip to main content

Advertisement

Log in

A Facile Preparation of Zinc Cobaltite (ZnCo2O4) Nanostructures for Promising Supercapacitor Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Hybrid nanocomposites have shown their excellent potential in energy storage devices particularly in electrochemical supercapacitors to meet the forthcoming demand in the energy sector applications. Novel hybrid composited displayed the dual nature of electrochemical double layer and pseudocapacitive behaviour, which makes them more advantageous in supercapacitor device fabrication. Zinc cobaltite (ZnCo2O4) nanostructures have been prepared by precipitation route and the structural, optical and electrochemical properties of the final product were analyzed. X-ray pattern showed the spinal cubic phase structure with fine nano-crystallites. The FTIR and Raman spectrum confirmed the presence of surface functional groups and confirmed the formation of high-quality ZnCo2O4 nanocrystals. XPS and EDX spectrum showed the high purity and good crystallinity nature of the as-prepared ZnCo2O4 nanocrystal. FE-SEM and TEM analysis exhibits the bundle like morphology of the final product. Finally, the as-prepared ZnCo2O4 nanostructure was investigated by cyclic voltammetry (CV), galvanic charge–discharge analysis (GCD) and electrochemical impedance spectroscopy (EIS) to check its suitability. The electrochemical investigation demonstrated the highest capacitance of 159 F g−1 at 2 mA cm−2 in 2 M KOH electrolyte and the long cyclic test showed the 92% initial capacitance retention over 2500 cycles. It reveals/demonstrated that the spinel ZnCo2O4 nanostructures own a promising usage in devices for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013)

    Google Scholar 

  2. K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials II (Springer, Cham, 2020)

    Book  Google Scholar 

  3. S. Ratha, A.K. Samantara, Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques (Springer, Singapore, 2018)

    Book  Google Scholar 

  4. B. Ashok, R.T.K. Raj, K. Nanthagopal, R. Krishnan, R. Subbarao, Lemon peel oil—a novel renewable alternative energy source for diesel engine. Energy Convers. Manag. 139, 110–121 (2017)

    Article  CAS  Google Scholar 

  5. H. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, Z. Salameh, A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control and applications. In: 2012 IEEE Power and Energy Society General Meeting, July 2012 (IEEE, 2012), p. 1.

  6. G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018)

    Article  Google Scholar 

  7. L.H. Tseng, C.H. Hsiao, D.D. Nguyen, P.Y. Hsieh, C.Y. Lee, N.H. Tai, Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim. Acta 266, 284–292 (2018)

    Article  CAS  Google Scholar 

  8. H. Wang, L. Ma, M. Gan, T. Zhou, Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS2 nanocomposite with high electrochemical performance for supercapacitors. J. Alloy Compd. 699, 176–182 (2017)

    Article  CAS  Google Scholar 

  9. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. J. Dong, Z. Hu, Z. Jian, D. Yuanyuan, Y. Hongxun, Y. Aihua, 2016 Facile synthesis of a metal–organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J. Mater. Chem. A 4, 8283–8290 (2016)

    Article  CAS  Google Scholar 

  11. P. Periasamy, T. Krishnakumar, V.P. Devarajan, M. Sandhiya, M. Sathish, M. Chavali, Investigation of electrochemical supercapacitor performance of WO3–CdS nanocomposites in 1 M H2SO4 electrolyte prepared by microwave-assisted method. Mater. Lett. 274, 127998 (2020)

    Article  CAS  Google Scholar 

  12. P. Periasamy, T. Krishnakumar, M. Sathish, M. Chavali, P.F. Siril, V.P. Devarajan, 2-D nanostructures of advanced hybridized for high performance WO3 nanocomposites of supercapacitor application. In: Nanostructured Materials and Their Applications (Springer, Singapore, 2020), p. 1.

  13. A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017)

    Article  CAS  Google Scholar 

  14. X. He, H. Ma, J. Wang, Y. Xie, N. Xiao, J. Qiu, Porous carbon nanosheets from coal tar for high-performance supercapacitors. J. Power Sources 357, 41–46 (2017)

    Article  CAS  Google Scholar 

  15. L. Wang, R. Wang, H. Zhao, L. Liu, D. Jia, High rate performance porous carbon prepared from coal for supercapacitors. Mater. Lett. 149, 85–88 (2015)

    Article  CAS  Google Scholar 

  16. Z. Wang, H. Qiang, C. Zhang, Z. Zhu, M. Chen, C. Chen, D. Zhang, Facile fabrication of hollow polyaniline spheres and its application in supercapacitor. J. Polym. Res. 25, 129 (2018)

    Article  CAS  Google Scholar 

  17. N. Padmanatha, S. Selladurai, Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes. RSC Adv. 4, 6527–6534 (2014)

    Article  CAS  Google Scholar 

  18. X. Li, J. Shao, J. Li, L. Zhang, Q. Qu, H. Zheng, Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. J. Power Sources 37, 80–83 (2013)

    Article  CAS  Google Scholar 

  19. C.V. Reddy, C. Byon, B. Narendra, B. Dudem, J. Shim, S.J. Moon, S.P. Vattikuti, Effect of calcination temperature on cobalt substituted cadmium ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 26(7), 5078–5084 (2015)

    Article  CAS  Google Scholar 

  20. T.V.M. Sreekanth, R. Ramaraghavulu, S.P. Vattikuti, J. Shim, K. Yoo, Microwave synthesis: ZnCo2O4 NPs as an efficient electrocatalyst in the methanol oxidation reaction. Mater. Lett. 253, 450–453 (2019)

    Article  CAS  Google Scholar 

  21. P.C. Nagajyothi, K.C. Devarayapalli, J. Shim, S.P. Vattikuti, Highly efficient white-LED-light-driven photocatalytic hydrogen production using highly crystalline ZnFe2O4/MoS2 nanocomposites. Int. J. Hydrog. Energy 45(57), 32756–32769 (2020)

    Article  CAS  Google Scholar 

  22. B. Poornaprakash, U. Chalapathi, S.V. Prabhakar Vttikuti, P. Reddy, S.H. Park, Pristine and Sm-doped ZnS quantum dots: structural, optical, luminescence, magnetic, and photocatalytic properties. Chalcogenide Lett. 16(2), 49–55 (2019)

  23. S.P. Vattikuti, A.K.R. Police, J. Shim, C. Byon, Sacrificial-template-free synthesis of core–shell C@ Bi2S3 heterostructures for efficient supercapacitor and H2 production applications. Sci. Rep. 8(1), 1–16 (2018)

    Article  CAS  Google Scholar 

  24. S.P. Vattikuti, B.P. Reddy, C. Byon, J. Shim, Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors. J. Solid State Chem. 262, 106–111 (2018)

    Article  CAS  Google Scholar 

  25. A.K.R. Police, S.P. Vattikuti, Y.J. Baik, B. Chan, Eco-friendly, hydrogen fluoride-free, morphology-oriented synthesis of TiO2 with exposed (001) facets. Ceram. Int. 45(2), 2178–2184 (2019)

    Article  CAS  Google Scholar 

  26. F. Razi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of HgI2 nanostructures via a new facile route. Mater. Lett. 193, 9–12 (2017)

    Article  CAS  Google Scholar 

  27. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Nd2O3 nanostructures: simple synthesis, characterization and its photocatalytic degradation of methylene blue. J. Mol. Liq. 234, 430–436 (2017)

    Article  CAS  Google Scholar 

  28. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. J. Mol. Liq. 231, 306–313 (2017)

    Article  CAS  Google Scholar 

  29. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Zirconia nanostructures: novel facile surfactant-free preparation and characterization. Int. J. Appl. Ceram. Technol. 13(1), 108–115 (2016)

    Article  CAS  Google Scholar 

  30. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. J. Mater. Sci. Mater. Electron. 26(8), 5812–5821 (2015)

    Article  CAS  Google Scholar 

  31. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. Mater. Electron. 31(20), 17332–17338 (2020)

    Article  CAS  Google Scholar 

  33. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati-Niasari, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, 105376 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46(17), 26548–26556 (2020)

    Article  CAS  Google Scholar 

  35. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46(5), 6095–6107 (2020)

    Article  CAS  Google Scholar 

  36. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47(7), 8959–8972 (2021)

    Article  CAS  Google Scholar 

  37. A. Ray, A. Roy, M. Ghosh, J.A. Ramos-Ramón, S. Saha, U. Pal, S.K. Bhattacharya, S. Das, Study on charge storage mechanism in working electrodes fabricated by sol–gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Appl. Surf. Sci. 463, 513–525 (2019)

    Article  CAS  Google Scholar 

  38. X. Zhu, Z. Wei, W. Zhao, X.D. Zhang, X.J. Wu, J.L. Jiang, Preparation and characterization of Zn1−xNixFe2O4 nanoparticles with spinel structure synthesized by hydrothermal method. Curr. Nanosci. 14(6), 474–480 (2018)

    Article  CAS  Google Scholar 

  39. T. Huang, C. Zhao, R. Zheng, Y. Zhang, Z. Hu, Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors. Ionics 21, 3109–3115 (2015)

    Article  CAS  Google Scholar 

  40. S. Vijayanand, P.A. Joy, H.S. Potdar, D. Patil, P. Patil, Nanostructured spinel ZnCo2O4 for the detection of LPG. Sens. Actuators B 152, 121–129 (2011)

    Article  CAS  Google Scholar 

  41. B. Liu, X. Wang, B. Liu, Q. Wang, D. Tan, W. Song, X. Hou, D. Chen, G. Shen, Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 6, 525–534 (2013)

    Article  CAS  Google Scholar 

  42. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005–3011 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. W. Shubo, P. Jun, T. Yao, C. Yuanyuan, G. Yan, W. Zhenghua, ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J. Mater. Chem. A 2, 5434–5440 (2014)

    Article  Google Scholar 

  44. L. Bin, L. Boyang, W. Qiufan, W. Xianfu, X. Qingyi, C. Di, S. Guozhen, New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 10011–10017 (2013)

    Article  CAS  Google Scholar 

  45. G. Zhou, J. Zhu, Y. Chen, L. Mei, X. Duan, G. Zhang, L. Chen, T. Wang, B. Lu, Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim. Acta 123, 450–455 (2014)

    Article  CAS  Google Scholar 

  46. F. Bao, X. Wang, X. Zhao, Y. Wang, Y. Ji, H. Zhang, X. Liu, Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv. 4, 2393–2397 (2014)

    Article  CAS  Google Scholar 

  47. L. Xu, Y. Zhao, J. Lian, Y. Xu, J. Bao, J. Qiu, L. Xu, H. Xu, M. Hua, H. Li, Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 123, 296–304 (2017)

    Article  CAS  Google Scholar 

  48. B. Liu, B. Liu, Q. Wang, X. Wang, Q. Xiang, D. Chen, G. Shen, New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5(20), 10011–10017 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Y.A. Kumar, K.D. Kumar, H.J. Kim, Reagents assisted ZnCo2O4 nanomaterial for supercapacitor application. Electrochim. Acta 330, 135261 (2020)

    Article  CAS  Google Scholar 

  50. V. Venkatachalam, A. Alsalme, A. Alswieleh, R. Jayavel, Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem. Eng. J. 321, 474–483 (2017)

    Article  CAS  Google Scholar 

  51. Y. Shang, T. Xie, C. Ma, L. Su, Y. Gai, J. Liu, L. Gong, Synthesis of hollow ZnCo2O4 microspheres with enhanced electrochemical performance for asymmetric supercapacitor. Electrochim. Acta 286, 103–113 (2018)

    Article  CAS  Google Scholar 

  52. A.J.C. Mary, A.C. Bose, Surfactant assisted ZnCo2O4 nanomaterial for supercapacitor application. Appl. Surf. Sci. 449, 105–112 (2018)

    Article  CAS  Google Scholar 

  53. M. Masjedi-Arani, M. Salavati-Niasari, Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. Int. J. Hydrog. Energy 42, 17184–17191 (2017)

    Article  CAS  Google Scholar 

  54. A. Salehabadi, M. Salavati-Niasari, M. Ghiyasiyan-Arani, Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J. Alloys Compd. 745, 789–797 (2018)

    Article  CAS  Google Scholar 

  55. S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26, 17–23 (2017)

    Article  Google Scholar 

  56. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Nd2Zr2O7–Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)

    Article  CAS  Google Scholar 

  57. F. Beshkar, H. Khojasteh, M. Salavati-Niasari, Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. J. Colloid Interface Sci. 497, 57–65 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. F. Ansari, A. Sobhani, M. Salavati-Niasari, Green synthesis of magnetic chitosan nanocomposites by a new sol–gel autocombustion method. J. Magn. Magn. Mater. 410, 27–33 (2016)

    Article  CAS  Google Scholar 

  59. F. Ansari, A. Sobhani, M. Salavati-Niasari, Simple sol–gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J. Colloid Interface Sci. 514, 723–732 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, D. Ghanbari, Hydrothermal green synthesis of magnetic Fe3O4–carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim. Acta A 203, 481–493 (2018)

    Article  CAS  Google Scholar 

  61. F. Tavakoli, M. Salavati-Niasari, A. Badiei, F. Mohandes, Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. 63, 51–57 (2015)

    Article  CAS  Google Scholar 

  62. M. Salavati-Niasari, Z. Fereshteh, F. Davar, Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28, 126–130 (2009)

    Article  CAS  Google Scholar 

  63. Y. Einaga, Electrochemical application of diamond electrodes, in Comprehensive Hard Materials. ed. by V.K. Sarin (Elsevier, Oxford, 2014), pp. 493–512

    Chapter  Google Scholar 

  64. M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, NiAl2O4 nanoparticles: synthesis and characterization through modify sol–gel method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 26, 7745–7750 (2015)

    Article  CAS  Google Scholar 

  65. L. Ren, P. Wang, Y. Han, C. Hu, B. Wei, Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Chem. Phys. Lett. 476, 78–83 (2009)

    Article  CAS  Google Scholar 

  66. X. Wei, D. Chen, W. Tang, Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol–gel method. Mater. Chem. Phys. 103, 54 (2007)

    Article  CAS  Google Scholar 

  67. B. Hadžić, N. Romčević, M. Romčević, I. Kuryliszyn-Kudelska, W.D. Dobrowolski, U. Narkiewicz, D. Sibera Hemijska, Raman study of surface optical phonons in ZnO (Co) nanoparticles prepared by hydrothermal method. Industrija 67(2013), 695–771 (2013)

    Google Scholar 

  68. N. Padmanathan, H. Shao, D. McNulty, C. ODwyer, K.M. Razeeb, Hierarchical NiO–In2O3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J. Mater. Chem. A 4, 4820–4830 (2016)

    Article  CAS  Google Scholar 

  69. R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Utilizing of neodymium vanadate nanoparticles as an efficient catalyst to boost the photocatalytic water purification. J. Environ. Manag. 230, 266–281 (2019)

    Article  CAS  Google Scholar 

  70. R. Monsef, M. Ghiyasiyan-Arani, O. Amiri, M. Salavati-Niasari, Sonochemical synthesis, characterization and application of PrVO4 nanostructures as an effective photocatalyst for discoloration of organic dye contaminants in wastewater. Ultrason. Sonochem. 61, 104822 (2020)

    Article  PubMed  CAS  Google Scholar 

  71. C.R. Mariappan, R. Kumar, G. Vijaya Prakash, Functional properties of ZnCo2O4 nano-particles obtained by thermal decomposition of a solution of binary metal nitrates. RSC Adv. 5, 26843–26849 (2015)

    Article  CAS  Google Scholar 

  72. N. Padmanathan, S. Selladurai, Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics 20(2014), 479–487 (2014)

    Article  CAS  Google Scholar 

  73. K. Xie, X. Qin, X. Wang, Y. Wang, H. Tao, Q. Wu, L. Yang, Z. Hu, Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 24, 347–352 (2012)

    Article  CAS  PubMed  Google Scholar 

  74. G.M. Tomboc, H.S. Jadhav, H. Kim, PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor. Chem. Eng. J. 308, 202–213 (2017)

    Article  CAS  Google Scholar 

  75. Y. Gai, Y. Shang, L. Gong, L. Su, L. Hao, F. Dong, A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv. 7, 1038–1044 (2017)

    Article  CAS  Google Scholar 

  76. J. Cheng, Y. Lu, K. Qiu, H. Yan, X. Hou, J. Xu, L. Han, X. Liu, J.-K. Kim, Y. Luo, Mesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Phys. Chem. Chem. Phys. 17, 17016–17022 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. J.A. Rajesh, B.-K. Min, J.-H. Kim, S.-H. Kang, H. Kim, K.-S. Ahn, Facile hydrothermal synthesis and electrochemical supercapacitor performance of hierarchical coral-like ZnCo2O4 nanowires. J. Electroanal. Chem. 785, 48–57 (2017)

    Article  CAS  Google Scholar 

  78. J.A. Rajesh, B.-K. Min, J.-H. Kim, S.-H. Kang, H. Kim, K.-S. Ahn, Cubic spinel AB2O4 type porous ZnCo2O4 microspheres: facile hydrothermal synthesis and their electrochemical performances in pseudocapacitor. J. Electrochem. Soc. 163, A2418–A2427 (2016)

    Article  CAS  Google Scholar 

  79. H. Wu, Z. Lou, H. Yang, G. Shen, A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7, 1921–1926 (2015)

    Article  CAS  PubMed  Google Scholar 

  80. S. Chen, M. Xue, Y. Li, L. Zhu, D. Zhang, Q. Fang, S. Qiu, Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorg. Chem. Front. 2, 177–183 (2015)

    Article  CAS  Google Scholar 

  81. Y. Shang, T. Xie, Y. Gai, L. Su, L. Gong, H. Lv, F. Dong, Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors. Electrochim. Acta 253, 281–290 (2017)

    Article  CAS  Google Scholar 

  82. K. Karthikeyan, D. Kalpana, N.G. Renganathan, Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15, 107–110 (2009)

    Article  CAS  Google Scholar 

  83. W. Fu, X. Li, C. Zhao, Y. Liu, P. Zhang, J. Zhou, X. Pan, E. Xie, Facile hydrothermal synthesis of flower like ZnCo2O4 microspheres as binder-free electrodes for supercapacitors. Mater. Lett. 149, 1–4 (2015)

    Article  CAS  Google Scholar 

  84. Q. Wang, J. Du, Y. Zhu, J. Yang, J. Chen, C. Wang, L. Li, L. Jiao, Facile fabrication and supercapacitive properties of mesoporous zinc cobaltite microspheres. J. Power Sources 284, 138–145 (2015)

    Article  CAS  Google Scholar 

  85. Q. Wang, L. Zhu, L. Sun, Y. Liu, L. Jiao, Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J. Mater. Chem. 3, 982–985 (2015)

    Article  CAS  Google Scholar 

  86. M. Davis, C. Gumeci, B. Black, C. Korzeniewski, L.H. Weeks, Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology. RSC Adv. 2, 2061 (2012)

    Article  CAS  Google Scholar 

  87. B. Guan, D. Guo, L. Hu, G. Zhang, T. Fu, W. Ren, J. Li, Q. Li, Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2, 16116–16123 (2014)

    Article  CAS  Google Scholar 

  88. X. Lu, D. Wu, R. Li, Q. Li, S. Ye, Y. Tong, G. Li, Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2, 4706–4713 (2014)

    Article  CAS  Google Scholar 

  89. W. Bai, H. Tong, Z. Gao, S. Yue, S. Xing, S. Dong, L. Shen, J. He, X. Zhang, Y. Liang, Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. J. Mater. Chem. A 3, 21891–21898 (2015)

    Article  CAS  Google Scholar 

  90. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high performance flexible lithium-ion batteries. Nano Lett. 12, 3005 (2012)

    Article  CAS  PubMed  Google Scholar 

  91. C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, P.K. Shen, K. Zhang, Hierarchical mesoporous zinc–nickel–cobalt ternary oxide nanowire arrays on nickel foam as high-performance electrodes for supercapacitors. ACS Appl. Mater. Interfaces 7, 26512–26521 (2015)

    Article  CAS  PubMed  Google Scholar 

  92. D. Zhang, Y. Zhang, X. Li, Y. Luo, H. Huang, J. Wang, P.K. Chu, Self-assembly of mesoporous ZnCo2O4 nanomaterials: density functional theory calculation and flexible all-solid-state energy storage. J. Mater. Chem. A 4, 568–577 (2016)

    Article  CAS  Google Scholar 

  93. S. Wang, J. Pu, Y. Tong, Y. Cheng, Y. Gao, Z. Wang, ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J. Mater. Chem. A 2, 5434 (2014)

    Article  CAS  Google Scholar 

  94. Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, H. Yuan, Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2, 16480–16488 (2014)

    Article  CAS  Google Scholar 

  95. S.G. Mohamed, C.-J. Chen, C.K. Chen, S.-F. Hu, R.-S. Liu, High-performance lithium ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces 6, 22701–22708 (2014)

    Article  CAS  PubMed  Google Scholar 

  96. C. An, Y. Wang, Y. Huang, Y. Xu, C. Xu, L. Jiao, H. Yuan, Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties. CrystEngComm 16, 385–392 (2014)

    Article  CAS  Google Scholar 

  97. Z. Niu, P. Luan, Q. Shao, H. Dong, L. Li, J. Chen, D. Zhao, L. Cai, W. Zhou, X. Chen, A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 5, 8726–8733 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through Research Groups Program under Grant No. R.G.P.2/103/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Silambarasan.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silambarasan, M., Ramesh, P.S., Geetha, D. et al. A Facile Preparation of Zinc Cobaltite (ZnCo2O4) Nanostructures for Promising Supercapacitor Applications. J Inorg Organomet Polym 31, 3905–3920 (2021). https://doi.org/10.1007/s10904-021-02077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02077-z

Keywords

Navigation