Skip to main content
Log in

Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the paper, a simple initial oxalate co-precipitation and subsequent high temperature calcination route has been employed to prepare porous ZnCo2O4 rodlike nanostructure. The rodlike ZnCo2O4 composed of obvious porous nanostructure has a size of about 26.78 nm. When used as supercapacitor, the electrochemical performances of rodlike ZnCo2O4 were clearly studied by liner sweep cyclic voltammetry, galvanostatic charge-discharge and EIS experiments. In detail, it can deliver a specific capacitance of 604.52 F g−1 at 1 A g−1 and have a capacity retention of 95.62 % over 3000 cycles. Excellent rate capability, 81.47 % specific capacitance retention for a 10-time scan rate rise and 62.17 % specific capacitance retention for a 10-time current density increase, is achieved. These results are much better than ZnO and Co3O4. Maybe, the enhanced electrochemical performances can be attributed to the porous rodlike structure and the synergy of Zn and Co. The high specific capacitance and excellent cycling ability of ZnCo2O4 show promise for its application in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chang J, Sun J, Xu CH, Xu H, Gao L (2012) Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors. Nanoscale 4:6786–6791

    Article  CAS  Google Scholar 

  2. Kim JM, Ju HR, Inamdar AI, Jo YC, Han J, Kim HS, Im HS (2014) Synthesis and enhanced electrochemical supercapacitor properties of Ag-MnO2-polyaniline nanocomposite electrodes. Energy 70:473–477

    Article  CAS  Google Scholar 

  3. Bhattacharjya D, Kim MS, Bae TS, Yu JS (2013) High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J Power Sources 244:799–805

    Article  CAS  Google Scholar 

  4. Gao PC, Lu AH, Li WC (2011) Dual functions of activated carbon in a positive electrode for MnO2-based hybrid supercapacitor. J Power Sources 196:4095–4101

    Article  CAS  Google Scholar 

  5. Zhao Y, Meng YN, Jiang P (2014) Carbon@MnO2 coreeshell nanospheres for flexible high-performance supercapacitor electrode materials. J Power Sources 259:219–226

    Article  CAS  Google Scholar 

  6. Ma C, Li YJ, Shi JL, Song Y, Liu L (2014) High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chem Eng J 249:216–225

    Article  CAS  Google Scholar 

  7. Uppugalla S, Male U, Srinivasan P (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochim Acta 146:242–248

    Article  CAS  Google Scholar 

  8. Yang CS, Jang YS, Jeong HK (2014) Bamboo-based activated carbon for supercapacitor applications. Curr Appl Phys 14:1616–1620

    Article  Google Scholar 

  9. Ryu KS, Kim KM, Park NP, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyanilne electrodes. J Power Sources 103:305–309

    Article  CAS  Google Scholar 

  10. Vijayakumar S, Kiruthika Ponnalagi A, Nagamuthu S, Muralidharan G (2013) Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochim Acta 106:500–505

    Article  CAS  Google Scholar 

  11. Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175:511–515

    Article  CAS  Google Scholar 

  12. Li Y, Xie HQ, Wang JF, Chen LF (2011) Preparation and electrochemical performances of α−MnO2 nanorod for supercapacitor. Mater Lett 65:403–405

    Article  CAS  Google Scholar 

  13. Yan X, Tong X, Wang J, Gong C, Zhang M, Liang L (2014) Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application. J Alloys Compd 93:184–189

    Article  Google Scholar 

  14. Kong LB, Lu C, Liu MC, Luo YC, Kang LK, Li XH, Walsh FC (2014) The specific capacitance of sol-gel synthesized spinel MnCo2O4 in an alkaline electrolyte. Electrochim Acta 115:22–27

    Article  CAS  Google Scholar 

  15. Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrogen Energy 39:15627–15638

    Article  CAS  Google Scholar 

  16. Chen HC, Jiang JJ, Zhang L, Qi T, Xia DD, Wan HZ (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36

    Article  CAS  Google Scholar 

  17. An CH, Wang YJ, Huang YA, Xu YA, Xu CC, Jiao LF, Yuan HT (2014) Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties. CrystEngComm 16:385–392

    Article  CAS  Google Scholar 

  18. Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15:107–110

    Article  CAS  Google Scholar 

  19. Wu C, Cai JJ, Zhang QB, Zhou X, Zhu Y, Li LJ, Shen PK, Zhang KL (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 169:202–209

    Article  CAS  Google Scholar 

  20. Fu WB, Li XL, Zhao CH, Liu Y, Zhang P, Zhou JY, Pan XJ, Xie EQ (2015) Facile hydrothermal synthesis of flowerlike ZnCo2O4 microspheres as binder-free electrodes for supercapacitors. Mater Lett 149:1–4

    Article  CAS  Google Scholar 

  21. Kang W, Feng F, Zhang M, Liu S, Shen Q (2013) Structural features and electrochemical properties of nanostructured ZnCo2O4 synthesized by an oxalate precursor method. J Nanoparticle Res 15:1891–1897

    Article  Google Scholar 

  22. Wang HL, Gao QM, Jiang L (2011) Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7:2454–2459

    CAS  Google Scholar 

  23. Liu MC, Kong LB, Lu C, Li XM, Luo YC, Kang L (2012) A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl Mater Interfaces 4:4631–4636

    Article  CAS  Google Scholar 

  24. Yuan CZ, Li JY, Hou LR, Zhang XG, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science and Technology Key Project of Fujian Province (2014H0038), the Science and Technology Program of LongYan (2014LY36), and the School Research Program of LongYan University (LC2013008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibiao Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Zhao, C., Zheng, R. et al. Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors. Ionics 21, 3109–3115 (2015). https://doi.org/10.1007/s11581-015-1491-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1491-2

Keywords

Navigation