Skip to main content
Log in

Ultrasonic Assisted Nano-structures of Novel Organotin Supramolecular Coordination Polymers as Potent Antitumor Agents

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The reaction of potassium tetracyanocupprate(I) with triethyltin bromide in presence of phenanthroline (Phen) and quinoxaline (Qox) in acetonitrile via ultrasonic radiation yielded two new nano-supramolecular coordination polymers (SCP) of the type: [Cu2(CN)4(Et3Sn)2(Phen)2] SCP1 and [Cu2(CN)3(Et3Sn)(Qox)] SCP2. The obtained polymers were characterized using elemental and thermal analyses, as well as FT-IR, UV–vis, fluorescence, 1H NMR, and MS spectroscopes. Spectral and analytical features led to the conclusion that both Phen and Qox behave as bidentate ligands and the proposed formulae of SCP1 and SCP2 have the bimetallic nature, in which the geometry around Cu(I) atoms in SCP1 is tetrahedral and planar trigonal. While in SCP2, the Cu(I) has a trigonal plane geometry. Thermal analysis studies indicated that both SCP1 and SCP2 are thermally stable up to 140 °C. Additional confirmation for the structures of SCP1 and SCP2 was obtained from density functional theory (DFT) and molecular mechanics (MM+) calculations. Transmission electron microscopy (TEM) images of SCP1 and SCP2 show regular spherical-like nano-sized particles in the range of 31.24–62.13 nm and 5.16–23.90 nm, respectively. The inhibitory anti-oxidant activities of both SCP1 and SCP2 were investigated using erythrocyte hemolysis and ABTS methods and their cytotoxicity activities towards different tumor cells were also studied by MTT assay. The results showed that both the two polymers have high inhibitory anti-oxidant activities and SCP2 exhibits a significant decrease in surviving fraction of these cancer cell lines compared to SCP1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Braga, F. Grepioni, Chem. Commun. (1996). https://doi.org/10.1039/CC9960000571

    Article  Google Scholar 

  2. A.S. Abd-El-Aziz, P.O. Shipman, B.N. Boden, W.S. McNeil, Prog. Polym. Sci. 35, 714 (2010) and references therein

  3. S. Silver, FEMS Microbiol. Rev. 27, 341 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. M.J.M. Vaerewijck, G. Huys, J.C. Palomino, J. Swings, F. Portaels, FEMS Microbiol. Rev. 29, 911 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. E.S. Raper, Coord. Chem. Rev. 153, 199 (1996)

    Article  CAS  Google Scholar 

  6. S. Zartilas, S.K. Hadjikakou, N. Hadjiliadis, N. Kourkoumelis, L. Kyros, M. Kubicki, M. Baril, I.S. Butler, S. Karkabounas, J. Balzarini, Inorg. Chim. Acta 362, 1003 (2009)

    Article  CAS  Google Scholar 

  7. M. Cavicchioli, A.C. Massabni, T.A. Heinrich, C.M. Costa-Neto, E.P. Abrảo, B.A.L. Fonseca, E.E. Castellano, P.P. Corbi, W.R. Lustri, C.Q.F. Leite, J. Inorg. Biochem. 104, 533 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. E.E. Tredget, H.A. Shankowsky, A. Groenveld, R. Burrell, J. Burn Care Rehabil. 19, 531 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. S.E.H. Etaiw, S.N. Abdou, A.A. Faheim, J. Coord. Chem. 68, 491 (2015)

    Article  CAS  Google Scholar 

  10. K.R. Vinothkumar, R. Henderson, Q. Rev. Biophys. 43, 65 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K.R. Siebenlist, F. Taketa, Toxicol. Appl. Pharmacol. 58, 67 (1981)

    Article  CAS  PubMed  Google Scholar 

  12. A.A. Ali, R.K. Upreti, A.M. Kidway, Toxicol. Lett. 38, 13 (1987)

    Article  CAS  PubMed  Google Scholar 

  13. A.A. Ali, R.K. Upreti, A.M. Kidway, Bull. Environ. Contam. Toxicol. 44, 29 (1990)

    Article  CAS  PubMed  Google Scholar 

  14. J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. B.M. Elliot, W.N. Aldridge, J.W. Bridges, Biochem. J. 177, 461 (1979)

    Article  Google Scholar 

  16. S.E.H. Etaiw, M.M. El-bendary, Spectrochim. Acta  A 110, 304 (2013)

    Article  CAS  Google Scholar 

  17. M. Gielen, E.R.T. Tiekink, Metallotherapeutic Drug and Metal-Based Diagnostic Agents: 50Sn Tin Compounds and Their Therapeutic Potential (Wiley, New York, 2005), pp. 421–439

    Book  Google Scholar 

  18. N. Ogwuru, L.E. Khoo, G. Eng, Appl. Organomet. Chem. 12, 409 (1998)

    Article  CAS  Google Scholar 

  19. G. Sava, G. Jaouen, E.A. Hillard, A. Bergamo, Dalton Trans. 41, 8226 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. J.M. Hearn, I. Romero-Canelón, B. Qamar, Z. Liu, I. Hands-Portman, P.J. Sadler, ACS Chem. Biol. 8, 1335 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. Hottin, D.W. Wright, A. Steenackers, P. Delannoy, F. Dubar, C. Biot, G.J. Davies, J.-B. Behr, Chem. Eur. J. 19, 9526 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. M.M. Meier, C. Rajendran, C. Malisi, N.G. Fox, C. Xu, S. Schlee, D.P. Barondeau, B. Höcker, R. Sterner, F.M. Raushel, J. Am. Chem. Soc. 135, 11670 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.A. Jakupec, M. Galanski, V.B. Arion, C.G. Hartinger, B.K. Keppler, Dalton Trans. (2008). https://doi.org/10.1039/B712656P

    Article  PubMed  Google Scholar 

  24. K. Strohfeldt, M. Tacke, Chem. Soc. Rev. 37, 1174 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. C.G. Hartinger, P.J. Dyson, Chem. Soc. Rev. 38, 391 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. L. Pellerito, L. Nagy, Coord. Chem. Rev. 224, 111 (2002)

    Article  CAS  Google Scholar 

  27. V. Dokorou, A. Primikiri, D. Kovala-Demertzi, J. Inorg. Biochem. 105, 195 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. M. Gielen, E.R.T. Tiekink, Tin compounds and their therapeutic potential, in Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine. ed. by M. Gielen, E.R.T. Tiekink (Wiley, West Sussex, 2005), pp. 421–439

    Chapter  Google Scholar 

  29. A.M.A. Ibrahim, E. Siebel, R.D. Fischer, Inorg. Chem. 37, 3521 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. E. Siebel, A.M.A. Ibrahim, R.D. Fischer, Inorg. Chem. 38, 2530 (1999)

    Article  CAS  Google Scholar 

  31. H. Hanika-Heidl, S.E.H. Etaiw, MSh. Ibrahim, R.D. Fischer, A.S. Badr El-din, J. Organomet. Chem. 684, 329 (2003)

    Article  CAS  Google Scholar 

  32. S.E.H. Etaiw, S.N. Abdou, J. Inorg. Organomet. Polym. 20, 622 (2010)

    Article  CAS  Google Scholar 

  33. M. Zurro, S. Asmus, S. Beckendorf, C.M. Lichtenfeld, O.G. Mancheno, J. Am. Chem. Soc. 136, 13999 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. B.A. Maynard, R.E. Sykora, J.T. Maguec, A.E.V. Gorden, Chem. Commun. 46, 4944 (2010)

    Article  CAS  Google Scholar 

  35. M.L. Toma, R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann, M. Verdaguer, Chem. Commun. 1850 (2003)

  36. E. Lissi, B. Modak, R. Torres, J. Escobar, A. Urza, Free Radic. Res. 30, 471 (1999)

    Article  CAS  PubMed  Google Scholar 

  37. A.B.A. El-Gazzar, A.M.S. Youssef, M.M. Youssef, A.A. Abu-Hashem, F.A. Badria, Eur. J. Med. Chem. 44, 609 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. R. Aeschlach, J. Loliger, C.B. Scott, A. Murcia, J. Butler, B. Halliwel, I.O. Aruoma, Food Chem. Toxicol. 32, 31 (1994)

    Article  Google Scholar 

  39. Y. Morimoto, K. Tanaka, Y. Iwakiri, S. Tokuhiro, S. Fukushima, Y. Takeuchi, Biol. Pharm. Bull. 18, 1417 (1995)

    Article  CAS  PubMed  Google Scholar 

  40. T. Mosmann, J. Immunol. Methods 65, 55 (1983)

    Article  CAS  PubMed  Google Scholar 

  41. F. Denizot, R. Lang, J. Immunol. Methods 22, 271 (1986)

    Article  Google Scholar 

  42. R.A. Penneman, L.H. Jones, J. Chem. Phys. 24, 293 (1956)

    Article  CAS  Google Scholar 

  43. S.E.H. Etaiw, S.N. Abdou, Appl Organomet. Chem. 32, 4053 (2018)

    Google Scholar 

  44. H.H. Jalfe, M. Orechin, Theory and Applications of Ultraviolet Spectroscopy, 5th edn. (Wiley, New York, 1970)

    Google Scholar 

  45. N. Armaroli, L.D. Cola, V. Balzani, J.-P. Sauvage, C. Dietrich-Buchecker, J.-M. Kern, J. Chem. Soc. Faraday Trans. 88, 553 (1992)

    Article  CAS  Google Scholar 

  46. B.N. Bandyopadhyay, A. Harriman, J. Chem. Soc. Faraday Trans. 1 73, 663 (1977)

    Article  CAS  Google Scholar 

  47. G.M. Badger, I.S. Walker, J. Chem. Soc. (1956). https://doi.org/10.1039/JR9560000122

    Article  Google Scholar 

  48. K. Yamamote, T. Takemura, H. Baba, Bull. Chem. Soc. Jpn 51, 729 (1978)

    Article  Google Scholar 

  49. M.J. Lim, C.A. Murray, T.A. Tronic, K.E. deKrafft, A.N. Ley, J.C. deButts, R.D. Pike, H. Lu, H.H. Patterson, Inorg. Chem. 47, 6947 (2008)

    Google Scholar 

  50. C.A. Bayse, T.P. Brewster, R.D. Pike, Inorg. Chem. 48, 174 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. S.E.H. Etaiw, S.A. Amer, M.M. El-Bendary, J. Inorg. Organomet. Polym. 21, 662 (2011)

    Article  CAS  Google Scholar 

  52. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  CAS  Google Scholar 

  53. B. Delley, Int. J. Quantum Chem. 69, 433 (1998)

    Article  Google Scholar 

  54. A. Kessi, B. Delley, Int. J. Quantum Chem. 68, 135 (1998)

    Article  CAS  Google Scholar 

  55. X. Wu ana, A.K. Ray, Phys. Rev. B 65, 85403 (2002)

    Article  CAS  Google Scholar 

  56. Materials, Studio v 5.0 Copyright 2009 (Accelrys Software, Inc., 2009)

  57. W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)

    Google Scholar 

  58. B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 7413 (1999)

    Article  Google Scholar 

  59. A. Matveev, M. Staufer, M. Mayer, N. Rösch, Int. J. Quantum Chem. 75, 863 (1999)

    Article  CAS  Google Scholar 

  60. S.E.H. Etaiw, S.N. Abdou, A.S. Badr El-din, J Inorg. Organomet. Polym. 25, 1478 (2015)

    Article  CAS  Google Scholar 

  61. C. Pellerito, L. Nagy, L. Pellerito, A. Azorcsik, J. Organomet. Chem. 691, 1733 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safaa N. Abdou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, S.N. Ultrasonic Assisted Nano-structures of Novel Organotin Supramolecular Coordination Polymers as Potent Antitumor Agents. J Inorg Organomet Polym 31, 3962–3975 (2021). https://doi.org/10.1007/s10904-021-02055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02055-5

Keywords

Navigation