Skip to main content
Log in

Seed Layer-Assisted Chemical Bath Deposition of Cu2O Nanoparticles on ITO-Coated Glass Substrates with Tunable Morphology, Crystallinity, and Optical Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A seed layer-assisted chemical bath deposition method performed at low temperature has been developed to grow uniform and high-quality crystal cuprous oxide (Cu2O) nanoparticles on transparent conductive/glass substrates. The annealing process by continuous beam (CW) of CO2 laser was used prior to growing the Cu2O nanoparticles. In this study, the controlled synthesis of Cu2O films was investigated by controlling the growth temperatures at 55 °C, 60 °C, 65 °C, and 70 °C, respectively. The modified seeding substrate reflect enhanced structural properties with laser annealing temperature of 450 ℃. In addition, Cu2O nanoparticles with flower-like stricter show a greater density containing a smaller particle with 75 nm average dimension and flower particle size was about 85 nm. Results suggest an effective synthesis route for developing high-quality Cu2O nanoparticles for optical and electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Hwang, H. Ahn, M. Kang, Y. Um, Curr. Appl. Phys. 15, 89–94 (2015)

    Article  Google Scholar 

  2. J.M. Taha, R.A. Nassif, N.H. Numan, M.A. Fakhri‏, Effects of oxygen gas on the physical properties of tin oxide nano films using laser light as ablation source. AIP Conf. Proc. 2213(1), 020235 (2020)‏

    Article  CAS  Google Scholar 

  3. H.Y. Xu, J.K. Dong, C. Chen, One-step chemical bath deposition and photocatalytic activity of Cu2O thin films with orientation and size controlled by a chelating agent. Mater. Chem. Phys. 143(2), 713–719 (2014)

    Article  CAS  Google Scholar 

  4. M.A. Fakhri, M.M. Hassan, Morphological and structural properties of Cu2O/2-D photonic silicon nano structure for gas sensors. AIP. Conf. Proceed. 2213(1), 020244 (2020)

    Article  CAS  Google Scholar 

  5. H.Y. Xu et al., Direct growth and shape control of Cu2O film via one-step chemical bath deposition. Thin Solid Films 527, 76–80 (2013)

    Article  CAS  Google Scholar 

  6. M.M. Hassan, M.A. Fakhri, S.A. Adnan, Structural and morphological properties of nano photonic silicon structure for photonics applications. Defect Diff Forum 398, 29–33 (2020)

    Article  Google Scholar 

  7. M. Pavan et al., TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Solar Energy Mater. Solar Cells 132, 549–556 (2015)

    Article  CAS  Google Scholar 

  8. M.M. Hassan, M.A. Fakhri, S.A. Adnan, Dnano photonic silicon fabrication for sensing application. Digest J Nanomater. Biostruct. 14(4), 873–878 (2019)

    Google Scholar 

  9. I. Choudhary, Flexible substrate compatible solution processed PN heterojunction diodes with indium-gallium-zinc oxide and copper oxide. Mater. Sci. Eng., B 218, 64–73 (2017)

    Article  CAS  Google Scholar 

  10. M. Miyayama et al., Ac impedance analysis of gas-sensing property in CuO/ZnO heterocontacts. Sensors Actuat. B Chem. 25(1–3), 383–387 (1995)

    Article  CAS  Google Scholar 

  11. M.A. Fakhri, A.W. Abdulwahhab, S.M. Kadhim, M.S. Alwazni, S.A. Adnan, Thermal oxidation effects on physical properties of CuO2 thin films for optoelectronic application. Mater. Res. Express 6(2), 026429 (2018)

    Article  CAS  Google Scholar 

  12. S.-J. Jung, H. Yanagida, The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas. Sens. Actuators, B Chem. 37(1–2), 55–60 (1996)

    Article  CAS  Google Scholar 

  13. A.M. Ibrahim et al., Effect of CuO-addition on the dielectric parameters of sodium zinc phosphate glasses. Silicon 10(4), 1265–1274 (2018)

    Article  CAS  Google Scholar 

  14. J. Singh et al., ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol 16(1), 84 (2018)

    Article  CAS  Google Scholar 

  15. C. Liu et al., Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection. Nano let. 14(10), 5603–5608 (2014)

    Article  CAS  Google Scholar 

  16. I.A. Ezenwa, Optical analysis of chemical bath fabricated CuO thin films. Res. J. Recent Sci 1(1), 46–50 (2012)

    CAS  Google Scholar 

  17. P. Sutradhar, M. Saha, D. Maiti, Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem. 4(1), 86 (2014)

    Article  Google Scholar 

  18. M.A. Fakhri, E.T. Salim, U. Hashim, A.W. Abdulwahhab, Z.T. Salim, Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3. J. Mater. Sci. Mater. Elect. 28(22), 16728–16735 (2017). https://doi.org/10.1007/s10854-017-7586-y

    Article  CAS  Google Scholar 

  19. S.P. Kuksenko, On the possibility of using lithium-doped copper oxide in lithium cells. Russ. J. Appl. Chem. 77(6), 1019–1021 (2004)

    Article  CAS  Google Scholar 

  20. Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, E.T. Salim, Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications. Mater. Res. Bullet. 86, 215–219 (2017). https://doi.org/10.1016/j.materresbull.2016.11.015

    Article  CAS  Google Scholar 

  21. W. Water, S.Y. Chu, Mater. Lett. 55, 67 (2002)

    Article  CAS  Google Scholar 

  22. J. Jayaprakash et al., Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1803–1806 (2015)

    Article  CAS  Google Scholar 

  23. C.-Y. Chiang et al., Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting–Part II. Photoelectrochemical study. Int. J. Hydrogen Energy 3624, 15519–15526 (2011)

    Article  CAS  Google Scholar 

  24. M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, Preparation and charactrization of photonic LiNbO3generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci. Mater. Electron. 27(12), 13105–13112 (2016). https://doi.org/10.1007/s10854-016-5455-8

    Article  CAS  Google Scholar 

  25. V. Ramya et al., Studies on chemical bath deposited CuO thin films for solar cells application. J. Mater. Sci. Mater. Electron. 26(11), 8489–8496 (2015)

    Article  CAS  Google Scholar 

  26. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysis of nanophotonic LINBO3. ARPN J. Eng. Appl. Sci. 11(8), 4974–4978 (2016)

    CAS  Google Scholar 

  27. H.Y. Xu et al., Direct growth and shape control of Cu2O film via one-step chemical bath deposition. Thin Solid Films 527, 76–80 (2013)

    Article  CAS  Google Scholar 

  28. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, D. Prakash, K.D. Verma, Optical investigation of nanophotonic lithium niobate-based optical waveguide. Appl. Phys. B Lasers Optics 121(1), 107–116 (2015). https://doi.org/10.1007/s00340-015-6206-x

    Article  CAS  Google Scholar 

  29. F.H. Alsultany et al., Catalytic growth of one-dimensional single-crystalline ZnO nanostructures on glass substrate by vapor transport. Ceram. Int. 43(1), 610–616 (2017)

    Article  CAS  Google Scholar 

  30. E.T. Salim, Y. Al-Douri, M.S. Al Wazny, M.A. Fakhri, Optical properties of Cauliflower-like Bi2O3nanostructures by reactive pulsed laser deposition (PLD) technique. Solar Energy 107, 523–529 (2014). https://doi.org/10.1016/j.solener.2014.05.020

    Article  CAS  Google Scholar 

  31. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. Alothman, G.T. Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review, Journal of King Saud University. Science 31, 257–269 (2019)

    Google Scholar 

  32. G. Sharma, D.D. Dionysioud, S. Sharma, A. Kumar, A.H. Al-Muhtasebe, M. Naushadf, F.J. Stadler, Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal. Today 335, 437–451 (2019)

    Article  CAS  Google Scholar 

  33. G. Sharma, D. Kumar, A. Kumar, A.H. Al-Muhtaseb, D. Pathania, M. Naushad, G.T. Mola, Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mater. Sci. Eng., C 71, 1216–1230 (2017)

    Article  CAS  Google Scholar 

  34. W. Zhang, H. Ye, R. Xiong, Metal-organic coordination compounds for potential ferroelectrics. Coord. Chem. Rev. 253, 2980–2997 (2009)

    Article  CAS  Google Scholar 

  35. S. Zhang, G. Lu, The optical properties of the ZnO nano-rod arrays on the ITO substrate. Mater. Lett. 155, 65–67 (2015)

    Article  CAS  Google Scholar 

  36. J. Sun et al., Realization of wide size range 1D ZnO micro/nano rods for versatile micro/nano devices by controlled seed layer thickness. Appl. Surf. Sci. 276, 782–786 (2013)

    Article  CAS  Google Scholar 

  37. Q. Wang, H. Xu, W. Huang, Z. Pan, H. Zhou, Metal organic frameworks-assisted fabrication of CuO/Cu2O for enhanced selective catalytic reduction of NOx by NH3 at low temperatures. J. Hazard. Mater. 364, 499–508 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. X. Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu, Y. Xiong, Metal−organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 141, 10924–10929 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. E.T. Salim, M.A. Fakhri, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic devises fabrication. Int. J. Nanoelectron. Mater. 6(2), 121–128 (2013)

    Google Scholar 

  40. N. Saadaldin, M.N. Alsloum, N. Hussain, Preparing of copper oxides thin films by chemical bath deposition (cbd) for using in environmental application. Energy procedia 74, 1459–1465 (2015)

    Article  CAS  Google Scholar 

  41. J. Sultana et al., Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: impact of growth time. Appl. Surf. Sci. 418(2017), 380–387 (2017)

    Article  CAS  Google Scholar 

  42. Odín. Reyes et al., Effect of temperature and pH on direct chemical bath deposition of cuprous oxide thin films. J. Mater. Sci. Mater. Electron. 29(18), 15535–15545 (2018)

    Article  CAS  Google Scholar 

  43. E.T. Salim, M.S. Al-Wazny, M.A. Fakhri, Glancing angle reactive pulsed laser deposition (GRPLD) for Bi 2O3/Si heterostructure. Mod. Phys. Lett. B 27(16), 1350122 (2013)

    Article  CAS  Google Scholar 

  44. R.A. Ismail, E.T. Salim, W.K. Hamoudi, Characterization of nanostructured hydroxyapatite prepared by Nd:YAG laser deposition. Mater. Sci. Eng., C 33(1), 47–52 (2013)

    Article  CAS  Google Scholar 

  45. E.T. Slim, Rapid thermal oxidation for silicon nanocrystal based solar cell. Int. J. Nanoelectron. Mater 5(2), 95–100 (2012)

    Google Scholar 

  46. F.H. Alsultany et al., Growth mechanism of seed/catalyst-free zinc oxide nanowire balls using intermittently pumped carrier gas: synthesis, characterization and applications. Optical Mater. 67, 70–77 (2017)

    Article  CAS  Google Scholar 

  47. I.R. Agool, E.T. Salim, M.A. Muhsien, Optical and electrical properties of SnO2thin film prepared using RTO method. Int. J. Mod. Phys. B 25(8), 1081–1089 (2011)

    Article  CAS  Google Scholar 

  48. F.H. Alsultany, Z. Hassan, N.M. Ahmed, A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate. Optical Mater. 60, 30–37 (2016)

    Article  CAS  Google Scholar 

  49. Y.S. No et al., Structural, optical, and electrical properties of Cu2O nanocubes grown on indium-tin-oxide-coated glass substrates by using seed-layer-free electrochemical deposition method. Appl. Surf. Sci. 258(19), 7581–7583 (2012)

    Article  CAS  Google Scholar 

  50. R.A. Ismail, B.G. Rasheed, E.T. Salm, M. Al-Hadethy, Transparent and conducting ZnO films prepared by reactive pulsed laser deposition. J. Mater. Sci. Mater. Electron. 18(4), 397–400 (2007). https://doi.org/10.1007/s10854-006-9046-y

    Article  CAS  Google Scholar 

  51. F.H. Alsultany et al., Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse. Optics Laser Technol. 98, 344–353 (2018)

    Article  CAS  Google Scholar 

  52. J. Song, S. Lim, Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C 111(2), 596–600 (2007)

    Article  CAS  Google Scholar 

  53. O.A. Abdulrazzaq, E.T. Saleem, Inexpensive near-IR photodetector. Turk. J. Phys. 30, 35–39 (2006)

    Google Scholar 

  54. W. Li et al., Defect annealing in ultra-thin polycrystalline silicon films on glass: rapid thermal versus laser processing. Mater. Lett. 107, 1–4 (2013)

    Article  CAS  Google Scholar 

  55. C. Zhu, M.J. Panzer, Seed layer-assisted chemical bath deposition of CuO films on ITO-coated glass substrates with tunable crystallinity and morphology. Chem. Mater. 26(9), 2960–2966 (2014)

    Article  CAS  Google Scholar 

  56. F.H. Alsultany. One-step chemical bath deposition of Cu2O flowers grown on ITO seed layer coated glass substrate. IOP Conf. Ser. Mater. Sci. Eng 557(1), 012081 (2019).

    Article  CAS  Google Scholar 

  57. C.M. Muiva, K. Maabong, C. Moditswe, CuO nanostructured thin films synthesised by chemical bath deposition on seed layers deposited by successive ionic layer adsorption and reaction and chemical spray pyrolysis techniques. Thin Solid Films 616, 48–54 (2016)

    Article  CAS  Google Scholar 

  58. F.H. Alsultany, Z. Hassan, N.M. Ahmed, Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness. AIP Conf. Proc. 1756, 090004 (2016)

    Article  Google Scholar 

  59. W. Li, S. Varlamov, J. Dore, M. Green, Defect annealing in ultra-thin polycrystalline silicon films on glass: rapid thermal versus laser processing. Mater. Lett. 107, 1–4 (2013).

    Article  CAS  Google Scholar 

  60. F.H. Alsultany, N.M. Ahmed, M.Z. Matjafri, Effects of CW CO2 Laser annealing on indium tin oxide thin films characteristics. Soft Nanosci. Lett. 4(04), 83 (2014)

    Article  Google Scholar 

  61. E.T. Salim, J.A. Saimon, M.K. Abood et al., Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis. Opt Quant Electron 52, 463 (2020)

    Article  CAS  Google Scholar 

  62. F.H. Alsultany, N.M. Ahmed, M.Z. Matjafri, Improvement of the structural, optical, and electrical properties of indium-tin-oxide thin films by high-temperature annealing. Int. J. Innov. Res. Sci. Eng. Technol. 3, 381–385 (2014)

    Google Scholar 

  63. E.T. Salim, R.A. Ismail, H.T. Halbos, Deposition geometry effect on structural, morphological and optical properties of Nb2O5 nanostructure prepared by hydrothermal technique. Appl. Phys. A 126, 891 (2020)

    Article  CAS  Google Scholar 

  64. D. Zhang et al., Influence of ITO deposition and post annealing on HIT solar cell structures. Energy Procedia 8, 207–213 (2011)

    Article  CAS  Google Scholar 

  65. S. Guillemin, V. Consonni, E. Appert, E. Puyoo, L. Rapenne, H. Roussel, Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires. J. Phys. Chem. C 116, 25106–25111 (2012)

    Article  CAS  Google Scholar 

  66. G.L.B. De Araujo, C.J. Benmore, S.R. Byrn, Local structure of ion pair interaction in lapatinib amorphous dispersions characterized by synchrotron X-ray diffraction and pair distribution function analysis. Scientific reports 7, 46367 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. C.-W. Cheng, C.-Y. Lin, High precision patterning of ITO using femtosecond laser annealing process. Appl. Surf. Sci. 314, 215–220 (2014)

    Article  CAS  Google Scholar 

  68. P. Dhiman, M. Naushad, K. Mujasam, A. Kumar, G. Sharma, A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment. J. Clean. Prod. 165, 1542–1556 (2017)

    Article  CAS  Google Scholar 

  69. G. Sharma, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Fabrication and characterization of novel Fe0@Guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violetdye. Sep. Purif. Technol. 211, 895–908 (2019)

    Article  CAS  Google Scholar 

  70. H.I. Abdulgafour et al., Sensing devices based on ZnO hexagonal tube-like nanostructures grown on p-GaN heterojunction by wet thermal evaporation. Thin Solid Films 540, 212–220 (2013)

    Article  CAS  Google Scholar 

  71. G. Sharma, A. Kumar, S. Sharma, M. Naushad, T. Ahamad, S.I. Al-Saeedi, G.M. Al-Senani, N.S. Al-kadhi, F.J. Stadler, Facile fabrication of Zr2Ni1Cu7 trimetallic nano-alloy and its compositewith Si3N4 for visible light assisted photodegradation of methylene blue. J. Mol. Liq. 272, 170–179 (2018)

    Article  CAS  Google Scholar 

  72. A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 334, 462–478 (2018)

    Article  CAS  Google Scholar 

  73. K.I. Mohammed, F.M. Jasim, M.I. Azawe, Influence of thickness and crystalline structure on thermal and optical properties of ZnO thin films. Curr. Appl. Phys. 14(9), 1318–1324 (2014)

    Article  Google Scholar 

  74. A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Vacuum 83, 927 (2009)

    Article  CAS  Google Scholar 

  75. J. Sohn, S.H. Song, D.W. Nam, I.T. Cho, E.S. Cho, J.H. Lee, H.I. Kwon, Semicond. Sci. Technol. 28, 015005 (2013)

    Article  CAS  Google Scholar 

  76. E.O. Chukwuocha, M.C. Onyeaju, T.S.T. Harry, Theoretical studies on the effect of confinement on quantum dots using the brus equation. World J. Condens. Matter Phys. 2, 96–100 (2012)

    Article  CAS  Google Scholar 

  77. M. Ohtsu, Nanophotonics and Nanofabrication. p. 111 (2009) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32121-6

  78. C.V. Ramana, R.J. Smith, O.M. Hussain, Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Phys. Stat. Sol 199(1), R4–R6 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan T. Salim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsultany, F.H., Alhasan, S.F.H. & Salim, E.T. Seed Layer-Assisted Chemical Bath Deposition of Cu2O Nanoparticles on ITO-Coated Glass Substrates with Tunable Morphology, Crystallinity, and Optical Properties. J Inorg Organomet Polym 31, 3749–3759 (2021). https://doi.org/10.1007/s10904-021-02016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02016-y

Keywords

Navigation