Skip to main content
Log in

Influence of carbon nanotube suspensions on the structural, optical, and electrical properties of grown ZnO nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanostructures have shown remarkable potential in optoelectronics applications due to their outstanding optical and electronic properties. Doping ZnO with nanomaterials such as metal nanoparticles has proven its effectiveness in altering, enhancing, and modifying the intrinsic ZnO to suit the intended application. However, doping ZnO with certain materials, such as carbon nanotubes (CNTs), is much more challenging due to their chemical inactivity and low dispersity in mediums. In this work, ZnO nanorods (ZNRs) were grown on ITO-coated glass substrate using the chemical bath deposition (CBD) method, followed by doping the ZNRs with CNTs suspended in different organic solvents using the drop-casting method. The doped ZNRs were characterized using several characterization methods, including AFM, FESEM, EDX, UV–Vis, PL, and IV. From the results, it was found that low yield integration of CNTs within the ZNRs was achieved when dimethylformamide (DMF) and ethanol (ETH) were used as solvents, whereby the doped ZNRs were observed to possess similar optical behavior. Results from the other solvent, 1,2-Dichloroethane (DCE), revealed structural damage to the ZNRs, and CNTs were found to merge with the ZNRs, forming a surface with large-size grains. Meanwhile, doping CNTs from acetone (ACE) solvent shows a promising result whereby an acceptable amount of CNTs were well integrated within the ZNRs with minimum structural damage. It was found that the roughness, average diameter, Zn:O:C ratio, band gap energy, and emission peak of the ZNTs doped with CNTs from ACE were 35.2, 57.89 nm, 46:38:16, 3.23 eV, 381.55 nm, respectively. This is the first study that focuses on doping ZNRs with CNT through drop-casting without degrading the electrical and optical properties of the ZNRs. We believe that CNT-doped ZNRs have excellent potential as gain media in electrically pumped random lasers due to the combination of the optical properties of ZnO and the electrical properties of the CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. P.K. Aspoukeh, A.A. Barzinjy, S.M. Hamad, Synthesis, properties and uses of ZnO nanorods: a mini review, International. Nano Lett. 12, 153–168 (2022). https://doi.org/10.1007/s40089-021-00349-7

    Article  Google Scholar 

  2. N. Rabiee, O. Akhavan, Y. Fatahi, A.M. Ghadiri, M. Kiani, P. Makvandi, M. Rabiee, M.H. Nicknam, M.R. Saeb, R.S. Varma, M. Ashrafizadeh, E.N. Zare, E. Sharifi, E.C. Lima, CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.135578

    Article  Google Scholar 

  3. S.G. Leonardi, Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors. (2017). https://doi.org/10.3390/chemosensors5020017

    Article  Google Scholar 

  4. N. Rosli, M.M. Halim, M.R. Hashim, W.M.W.A. Kamil, G.Y. Zhuang, S.Y. Chan, H.C. Hsu, Physical and optical effect of ZnO nanowalls to nanoflakes on random lasing emission. Results Phys. (2021). https://doi.org/10.1016/j.rinp.2021.104528

    Article  Google Scholar 

  5. C.V. Manzano, L. Philippe, A. Serrà, Recent progress in the electrochemical deposition of ZnO nanowires: synthesis approaches and applications. Crit. Rev. Solid State Mater. Sci. 47, 772–805 (2022). https://doi.org/10.1080/10408436.2021.1989663

    Article  ADS  Google Scholar 

  6. A. Muthuvel, M. Jothibas, C. Manoharan, Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.103705

    Article  Google Scholar 

  7. G. Kamarajan, D.B. Anburaj, V. Porkalai, A. Muthuvel, G. Nedunchezhian, Green synthesis of ZnO nanoparticles using Acalypha indica leaf extract and their photocatalyst degradation and antibacterial activity. J. Indian Chem. Soc. (2022). https://doi.org/10.1016/j.jics.2022.100695

    Article  Google Scholar 

  8. K. Bijanzad, A. Tadjarodi, O. Akhavan, Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II), Cuihua Xuebao/Chinese. J. Catal. 36, 742–749 (2015). https://doi.org/10.1016/S1872-2067(14)60305-3

    Article  Google Scholar 

  9. N. Rosli, M.M. Halim, W.M. Wan Ahmad Kamil, M.R. Hashim, H.-C. Hsu, J.-Y. Zhuang, C. Siyuan, Influence of density distribution of ZnO nanorods on observing the random lasing emission, J. Fotonik. 2 1–7. (2021). https://journalfotonik.com/index.php/jf/article/view/22.

  10. A.B. Djurišić, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34, 191–259 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  ADS  Google Scholar 

  11. N. Mahendran, S. Johnson Jeyakumar, M. Jothibas, M. Ponnar, A. Muthuvel, Synthesis, characterization of undoped and copper-doped hafnium oxide nanoparticles by sol–gel method. J. Mater. Sci. Mater. Electron. 33, 10439–10449 (2022). https://doi.org/10.1007/s10854-022-08031-0

    Article  Google Scholar 

  12. S. Shahzad, S. Javed, M. Usman, A review on synthesis and optoelectronic applications of nanostructured ZnO. Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.613825

    Article  Google Scholar 

  13. O.F. Farhat, M.M. Halim, N.M. Ahmed, M.A. Qaeed, ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector. Superlattices Microstruct. 100, 1120–1127 (2016). https://doi.org/10.1016/j.spmi.2016.10.076

    Article  ADS  Google Scholar 

  14. Y. Qu, X. Huang, Y. Li, G. Lin, B. Guo, D. Song, Q. Cheng, Chemical bath deposition produced ZnO nanorod arrays as an antireflective layer in the polycrystalline Si solar cells. J. Alloy. Compd. 698, 719–724 (2017). https://doi.org/10.1016/j.jallcom.2016.12.265

    Article  Google Scholar 

  15. A.N. Azmi, W.Z. Wan Ismail, H. Abu Hassan, M.M. Halim, N. Zainal, O.L. Muskens, W.M. Wan Ahmad Kamil, Review of open cavity random lasers as laser-based sensors. ACS Sensors. 7, 914–928 (2022). https://doi.org/10.1021/ACSSENSORS.1C02749/ASSET/IMAGES/MEDIUM/SE1C02749_0009.GIF

    Article  Google Scholar 

  16. A.T. Ali, W. Maryam, Y.-W. Huang, H.-C. Hsu, N.M. Ahmed, N. Zainal, H. Abu Hassan, M.A. Dheyab, UV random laser in aluminum-doped ZnO nanorods. J. Opt. Soc. Am. B. 38, C9 (2021). https://doi.org/10.1364/josab.427132

    Article  Google Scholar 

  17. I. Ahmad, S. Shukrullah, M. Ahmad, E. Ahmed, M.Y. Naz, M.S. Akhtar, N.R. Khalid, A. Hussain, I. Hussain, Effect of Al doping on the photocatalytic activity of ZnO nanoparticles decorated on CNTs and graphene: solvothermal synthesis and study of experimental parameters. Mater. Sci. Semiconductor Process. (2021). https://doi.org/10.1016/j.mssp.2020.105584

    Article  Google Scholar 

  18. A.T. Ali, W. Maryam, Y.W. Huang, H.C. Hsu, N.M. Ahmed, N. Zainal, H.A. Hassan, Random laser behavior in gold-doped zinc oxide nanorods structures. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/2075/1/012015

    Article  Google Scholar 

  19. B. Altun, I. Karaduman Er, A.O. Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-04843-9

    Article  Google Scholar 

  20. S. Ilican, Effect of Na doping on the microstructures and optical properties of ZnO nanorods. J. Alloy. Compd. 553, 225–232 (2013). https://doi.org/10.1016/j.jallcom.2012.11.081

    Article  Google Scholar 

  21. S. Roy, N. Banerjee, C.K. Sarkar, P. Bhattacharyya, Development of an ethanol sensor based on CBD grown ZnO nanorods. Solid-State Electron. 87, 43–50 (2013). https://doi.org/10.1016/j.sse.2013.05.003

    Article  ADS  Google Scholar 

  22. R. Shabannia, Synthesis and characterization of Cu-doped ZnO nanorods chemically grown on flexible substrate. J. Mol. Struct. 1118, 157–160 (2016). https://doi.org/10.1016/j.molstruc.2016.04.015

    Article  ADS  Google Scholar 

  23. R. Saha, A. Karmakar, S. Chattopadhyay, Comparative investigation of Ga-and Sn-doped ZnO nanowires/p-Si heterojunctions for UV-photo sensing. In: 2018 International Symposium on devices, circuits and systems, ISDCS 2018, pp. 1–5. https://doi.org/10.1109/ISDCS.2018.8379683. (2018)

  24. M.A.M. Ahmed, W.E. Meyer, J.M. Nel, Structural, optical and electrical properties of a Schottky diode fabricated on Ce doped ZnO nanorods grown using a two step chemical bath deposition. Mater. Sci. Semicond. Process. 87, 187–194 (2018). https://doi.org/10.1016/j.mssp.2018.07.021

    Article  Google Scholar 

  25. M.A.M. Ahmed, B.S. Mwankemwa, E. Carleschi, B.P. Doyle, W.E. Meyer, J.M. Nel, Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 79, 53–60 (2018). https://doi.org/10.1016/j.mssp.2018.02.003

    Article  Google Scholar 

  26. S.B. Bashar, M. Suja, M. Morshed, F. Gao, J. Liu, An Sb-doped p-type ZnO nanowire based random laser diode. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/6/065204

    Article  Google Scholar 

  27. M. Duta, S. Mihaiu, C. Munteanu, M. Anastasescu, P. Osiceanu, A. Marin, S. Preda, M. Nicolescu, M. Modreanu, M. Zaharescu, M. Gartner, Properties of In-N codoped p-type ZnO nanorods grown through a two-step chemical route. Appl. Surf. Sci. 344, 196–204 (2015). https://doi.org/10.1016/j.apsusc.2015.03.123

    Article  ADS  Google Scholar 

  28. M.S. Nadeem, T. Munawar, F. Mukhtar, M. Naveed ur Rahman, M. Riaz, A. Hussain, F. Iqbal, Hydrothermally derived co, Ni co-doped ZnO nanorods; structural, optical, and morphological study. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2020.110606

    Article  Google Scholar 

  29. A. Nourmohammadi, R. Rahighi, O. Akhavan, A. Moshfegh, Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. J. Alloy. Compd. 612, 380–385 (2014). https://doi.org/10.1016/j.jallcom.2014.05.195

    Article  Google Scholar 

  30. O. Akhavan, R. Azimirad, S. Safa, Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater. Chem. Phys. 130, 598–602 (2011). https://doi.org/10.1016/j.matchemphys.2011.07.030

    Article  Google Scholar 

  31. N. Mahendran, B. Anand, M. Rajarajan, A. Muthuvel, V. Mohana, Green synthesis, characterization and antimicrobial activities of silver nanoparticles using Cissus quadrangularis leaf extract. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.08.043

    Article  Google Scholar 

  32. N. Al-Zaqri, A. Muthuvel, M. Jothibas, A. Alsalme, F.A. Alharthi, V. Mohana, Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: characterization, photocatalytic degradation and antibacterial activities. Inorg. Chem. Commun. (2021). https://doi.org/10.1016/j.inoche.2021.108507

    Article  Google Scholar 

  33. J. Ungula, H.C. Swart, Structural, morphological and optical properties of ZnO nanorods grown on a ZnO: Ga seeded thin film: the role of chemical bath deposition precursor concentration at constant and varying II/VI molar ratios. Thin Solid Films (2019). https://doi.org/10.1016/j.tsf.2019.137483

    Article  Google Scholar 

  34. A.T. Ali, W. Maryam, Y.W. Huang, H.C. Hsu, N.M. Ahmed, H.A. Hassan, N. Zainal, Random lasing from gold-doped zinc oxide nanorods. Opt. Mater. 132, 112776 (2022). https://doi.org/10.1016/j.optmat.2022.112776

    Article  Google Scholar 

  35. A. Abdulhameed, N.Z.A. Wahab, M.N. Mohtar, M.N. Hamidon, S. Shafie, I.A. Halin, Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. J. Electron. Mater. 50, 3207–3221 (2021). https://doi.org/10.1007/s11664-021-08928-2

    Article  ADS  Google Scholar 

  36. G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. (2015). https://doi.org/10.1016/j.jiec.2014.03.022

    Article  Google Scholar 

  37. O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J. Mater. Chem. 21, 387–393 (2011). https://doi.org/10.1039/c0jm02395g

    Article  Google Scholar 

  38. N. Jalilinejad, M. Rabiee, N. Baheiraei, R. Ghahremanzadeh, R. Salarian, N. Rabiee, O. Akhavan, P. Zarrintaj, A. Hejna, M.R. Saeb, A. Zarrabi, E. Sharifi, S. Yousefiasl, E.N. Zare, Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng. Transl. Med. (2023). https://doi.org/10.1002/btm2.10347

    Article  Google Scholar 

  39. J. Md Yusof, I. Ismail, M.R. Yusop, S. Abdul Rashid, Morphological effect on conductivity performance of ZnO/carbon nanotubes cotton hybrid. Appl. Surf. Sci. Adv. 7, 100211 (2022). https://doi.org/10.1016/j.apsadv.2022.100211

    Article  Google Scholar 

  40. M. Basit, M. Abbas, N. Ahmad, S. Javed, N.A. Shah, Synthesis of ZnO/CNT nanocomposites for ultraviolet sensors. Front. Mater. 9, 1–14 (2022). https://doi.org/10.3389/fmats.2022.835521

    Article  Google Scholar 

  41. H. Abdullah, A. Omar, M.Z. Razali, M.A. Yarmo, Photovoltaic properties of ZnO photoanode incorporating with CNTs for dye-sensitized solar cell application. Ionics 20, 1023–1030 (2014). https://doi.org/10.1007/s11581-013-1038-3

    Article  Google Scholar 

  42. Y. Huang, R. Li, D. Chen, X. Hu, P. Chen, Z. Chen, D. Li, Synthesis and characterization of CNT/TiO2/ZnO composites with high photocatalytic performance. Catalysts (2018). https://doi.org/10.3390/catal8040151

    Article  Google Scholar 

  43. H. Gulab, N. Fatima, N. Shahzad, M.I. Shahzad, M. Siddique, M. Hussain, M. Humayun, Fabrication of carbon/zinc oxide nanocomposites as highly efficient catalytic materials for application in dye-sensitized solar cells. Catalysts 12, 1354 (2022). https://doi.org/10.3390/catal12111354

    Article  Google Scholar 

  44. M.M. Mohamed, M.A. Ghanem, S.M. Reda, M. Khairy, E.M. Naguib, N.H. Alotaibi, Photovoltaic and capacitance performance of low-resistance ZnO nanorods incorporated into carbon nanotube-graphene oxide nanocomposites. Electrochim. Acta 307, 430–441 (2019). https://doi.org/10.1016/j.electacta.2019.03.226

    Article  Google Scholar 

  45. K. Nagpal, L. Rapenne, D.S. Wragg, E. Rauwel, P. Rauwel, The role of CNT in surface defect passivation and UV emission intensification of ZnO nanoparticles. Nanomater. Nanotechnol. (2022). https://doi.org/10.1177/18479804221079419

    Article  Google Scholar 

  46. A. Abdulhameed, M.N. Mohtar, M.N. Hamidon, I.A. Halin, Mild nitric acid treatments to improve multi-walled carbon nanotubes dispersity and solubility in dielectrophoresis mediums. Fullerenes Nanotubes Carbon Nanostruct. 29, 832–839 (2021). https://doi.org/10.1080/1536383X.2021.1908999

    Article  ADS  Google Scholar 

  47. A. Abdulhameed, M. Nazim Mohtar, M.N. Hamidon, I. Mansor, I.A. Halin, Characterization and selective deposition of carbon nanotubes from carbon nanoparticles mixture using mild acid treatment and electrokinetic manipulation. Mater. Res. Express. 8, 55603 (2021). https://doi.org/10.1088/2053-1591/ac017e

    Article  Google Scholar 

  48. E. Chalangar, O. Nur, M. Willander, A. Gustafsson, H. Pettersson, Synthesis of vertically aligned ZnO nanorods using sol-gel seeding and colloidal lithography patterning. Nanoscale Res. Lett. (2021). https://doi.org/10.1186/s11671-021-03500-7

    Article  Google Scholar 

  49. T. Tadros, Ostwald ripening. Encycl. Colloid Interface Sci. (2013). https://doi.org/10.1007/978-3-642-20665-8_124

    Article  Google Scholar 

  50. M. Wang, S. Li, P. Zhang, Y. Wang, H. Li, Z. Chen, A modified sequential method used to prepare high quality perovskite on ZnO nanorods. Chem. Phys. Lett. 639, 283–288 (2015). https://doi.org/10.1016/j.cplett.2015.09.044

    Article  ADS  Google Scholar 

  51. N.M. Jacob, T. Thomas, Nanorod to quantum dot conversion in ZnO dispersions with co-surfactants. RSC Adv. 5, 15154–15158 (2015). https://doi.org/10.1039/c4ra05778c

    Article  ADS  Google Scholar 

  52. N. Rosli, M.M. Halim, M.R. Hashim, W. Maryam, M.F.M. Rusdi, A.R. Muhammad, Effect of the seeding thickness on the growth of ZnO nanorods prepared by CBD. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/854/1/012074

    Article  Google Scholar 

  53. A.N. Azmi, P. Swee Yong, W.M. Wan, A. Kamil, Ex-situ doping of ZnO structures as potential random lasers. J. Phys. Conf. Ser. 2411, 12009 (2022). https://doi.org/10.1088/1742-6596/2411/1/012009

    Article  Google Scholar 

  54. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 29, 3097–3105 (2013). https://doi.org/10.1021/la4001768

    Article  Google Scholar 

  55. M. Jannesari, O. Akhavan, H.R. Madaah Hosseini, B. Bakhshi, Oxygen-rich graphene/ZnO2-Ag nanoframeworks with pH-switchable catalase/peroxidase activity as O2 nanobubble-self generator for bacterial inactivation. J. Colloid Interface Sci. 637, 237–250 (2023). https://doi.org/10.1016/j.jcis.2023.01.079

    Article  ADS  Google Scholar 

  56. O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49, 11–18 (2011). https://doi.org/10.1016/j.carbon.2010.08.030

    Article  Google Scholar 

  57. J. Ungula, S. Kiprotich, H.C. Swart, B.F. Dejene, Investigation on the material properties of ZnO nanorods deposited on Ga-doped ZnO seeded glass substrate: effects of CBD precursor concentration. Surf. Interface Anal. 54, 1023–1031 (2022). https://doi.org/10.1002/sia.7127

    Article  Google Scholar 

  58. A. Kaphle, P. Hari, Characterization of aluminum doped nanostructured ZnO / p-Si heterojunction. Int. J. Eng. Sci. 5, 41–51 (2016)

    Google Scholar 

  59. I. Boukhoubza, M. Khenfouch, M. Achehboune, L. Leontie, A.C. Galca, M. Enculescu, A. Carlescu, M. Guerboub, B.M. Mothudi, A. Jorio, I. Zorkani, Graphene oxide concentration effect on the optoelectronic properties of ZnO/GO nanocomposites. Nanomaterials 10, 1–16 (2020). https://doi.org/10.3390/nano10081532

    Article  Google Scholar 

  60. C.A. Ruiz-Rojas, M. Aguilar-Frutis, F. Ramos-Brito, I.A. Garduño-Wilches, J. Narro-Ríos, L. Lartundo-Rojas, G. Alarcón-Flores, Synthesis, characterization, and temperature-dependent electronic properties of ZnO nanorods using CBD techniques. J. Mater. Sci. Mater. Electron. 32, 8944–8957 (2021). https://doi.org/10.1007/s10854-021-05565-7

    Article  Google Scholar 

  61. N. Arsalani, S. Bazazi, M. Abuali, S. Jodeyri, A new method for preparing ZnO/CNT nanocomposites with enhanced photocatalytic degradation of malachite green under visible light. J. Photochem. Photobiol. A Chem. 389, 112207 (2020). https://doi.org/10.1016/j.jphotochem.2019.112207

    Article  Google Scholar 

  62. P. Fallah Azad, N. Naderi, M.J. Eshraghi, A. Massoudi, The effect of seed layer on optical and structural characteristics of ZnO nanorod arrays deposited by CBD method. J. Mater. Sci. Mater. Electron. 28, 15495–15499 (2017). https://doi.org/10.1007/s10854-017-7437-x

    Article  Google Scholar 

  63. E. Rokhsat, O. Akhavan, Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl. Surf. Sci. 371, 590–595 (2016). https://doi.org/10.1016/j.apsusc.2016.02.222

    Article  ADS  Google Scholar 

  64. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010). https://doi.org/10.1021/nn1007429

    Article  Google Scholar 

  65. A. Das, R. Saha, S. Guhathakurata, S. Pal, N.R. Saha, H.S. Dutta, A. Karmakar, S. Chattopadhyay, Tuning of transport properties of the double-step chemical bath deposition grown zinc oxide (ZnO) nanowires by controlled annealing: an approach to generate p-type ZnO nanowires. Thin Solid Films 649, 129–135 (2018). https://doi.org/10.1016/j.tsf.2018.01.036

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme with Project Code: FRGS/1/2020/STG07/USM/ 02/10 to realize this work.

Author contributions

AA: conceptualization; data curation; formal analysis; investigation; methodology; experiments; writing-original draft. MMH: discussion; experiments; funding acquisition; supervision; writing–review & editing. WMWAK: discussion; review; experiments. KOZ: discussion; experiments. AUA: discussion; review. SKA: discussion; review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah Abdulhameed or Mohd Mahadi Halim.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulhameed, A., Halim, M.M., Wan Ahmad Kamil, W.M. et al. Influence of carbon nanotube suspensions on the structural, optical, and electrical properties of grown ZnO nanorods. Appl. Phys. A 129, 532 (2023). https://doi.org/10.1007/s00339-023-06801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06801-z

Keywords

Navigation