Skip to main content
Log in

Structural, Electrical and Optical Properties of PVC/ZnTe Nanocomposite Thin Films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

ZnTe nanoparticles (NPs) were synthesized using hydrothermal method and then were dispersed in poly(vinyl-chloride) (PVC) to prepare hybrid PVC/ZnTe nanocomposite thin films which were deposited on glass substrates by the dip coating technique in the aim to be used in photoelectronic applications. Structural, optical and electrical properties of films were investigated by different techniques. XRD analysis revealed that synthesized ZnTe NPs have a cubic structure and a nanoscale size,while pure PVC films have a weak degree of crystallinity and exhibit a broad diffraction peak at low angles. The PVC/ZnTe nanocomposite thin films display an intense diffraction peak corresponding to the plane (220) which indicates a preferred orientation of ZnTe nanocystallites along crystallographic axis [220]. This texture was also showed by the atomic force microscopy micrographs.The analysis by FT-IR and Raman vibrational spectroscopies confirmed the incorporation of ZnTe NPs in the PVC matrix.The ZnTe/PVC nanocomposites thin films have an optical transparency over 80% in the visible range and an optical gap close to 4.07 eV. Discrepancies with respect to the gap of pure PVC (red shift) and bulk ZnTe (blue shift) are due to the effect of the interaction between the ZnTe NPs and the PVC matrixand also to the nanometric size of the ZnTe NPs. Photoluminescence (PL) spectra showed an enhanced blue emission at 466 nm,a green emissionat 522 nm and a strong red emission at 686 nm. Thus the incorporation of oriented ZnTe NPs induced a new optical behavior of the PVC polymer matrix. Electrical measurements indicate a decrease of electrical resistivity of PVC/ZnTe nanocompositesas ZnTe NPs concentration increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–3 (2009). https://doi.org/10.1590/S1516-14392009000100002

    Article  CAS  Google Scholar 

  2. J. Nelson, Organic photovoltaic films. Curr. Opin. Solid State Mater. Sci. 6(1), 87–95 (2002). https://doi.org/10.1016/S1359-0286(02)00006-2

    Article  CAS  Google Scholar 

  3. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid Nanorod-Polymer solar cells. Science 295(5564), 2425–2427 (2002). https://doi.org/10.1126/science.1069156

    Article  CAS  PubMed  Google Scholar 

  4. A. Petrella, M. Tamborra, M.L. Curri, P. Cosma, M. Striccoli, P.D. Cozzoli, A. Agostiano, Colloidal TiO2 nanocrystals /MEH-PPV nanocomposites: photo(electro) chemical study. J. Phys. Chem. B 109(4), 1554–1562 (2005). https://doi.org/10.1021/jp046597c

    Article  CAS  PubMed  Google Scholar 

  5. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Func. Mater. 16(8), 1112–1116 (2006). https://doi.org/10.1002/adfm.200500573

    Article  CAS  Google Scholar 

  6. GI Rusu, PPrepeliţă, RS Rusu, N Apetroaie, G Oniciuc, A Amariei, On the structural and optical characteristics of zinc telluride thin films, J. Optoelectron. Adv. M. 8(3), 922–926 (2006). https://old.joam.inoe.ro/arhiva/pdf8_3/3Rusu.pdf

  7. S. Adachi, Zinc Telluride ZnTe, in Optical Constants of Crystalline and Amorphous Semiconductors. ed. by S. Adachi (Springer, Boston, 1999), p. 473

    Chapter  Google Scholar 

  8. C. Ton-That, M.R. Phillip, T.P. Nguyen, Blue shift in the luminescence spectra of MEH-PPV films containing ZnO nanoparticles. J. Lumin. 128(12), 2031–2034 (2008). https://doi.org/10.1016/j.jlumin.2008.07.004

    Article  CAS  Google Scholar 

  9. P. Ilanchezhiyan, G.M. Kumar, S. Fu Xiao, A.M. Poongothai, C. Kumar, S.U. Siva, D.J. Yuldashev, Y.H. Lee, T.W. Kwon, Kang, , Ultrasonic-assisted synthesis of ZnTe nanostructures and their structural, electrochemical and photoelectrical properties. Ultrason. Sonochem. 39, 414–419 (2017). https://doi.org/10.1016/j.ultsonch.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  10. S. Patra, S.K. Pradhan, Microstructural, optical and quantum confinement effect study of mechanically synthesized ZnTe quantum dots. Acta Mater. 60(1), 131–138 (2012). https://doi.org/10.1016/j.actamat.2011.09.024

    Article  CAS  Google Scholar 

  11. Q. Zhang, J. Zhang, M.I.B. Utama, B. Peng, M. de la Mata, J. Arbiol, Q. Xiong, Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys. Rev. B 85, 085418 (2012). https://doi.org/10.1103/PhysRevB.85.085418

    Article  CAS  Google Scholar 

  12. M.A. Kamran, Novel low-temperature synthesis and optical properties of 1D-ZnTe nanowires. J. Sci.: Adv. Mater Device 3(2), 226–229 (2018). https://doi.org/10.1016/j.jsamd.2018.04.001

    Article  Google Scholar 

  13. S. Shafiee, O. Akhavan, H. Hatami, P. Hoseinkhani, Sol-gel synthesis of thermoluminescent Cd-doped ZnTe nanoparticles. IJPAP. 53(12), 804–807 (2015). http://hdl.handle.net/123456789/33469

  14. B.B. Wang, M.K. Zhu, N. Hu, L.J. Li, Raman scattering and photoluminescence of zinc telluride nanopowders at room temperature. J. Lumin. 131(12), 2550–2554 (2011). https://doi.org/10.1016/j.jlumin.2011.06.028

    Article  CAS  Google Scholar 

  15. G. b. Dong, B. B. Wang, M. Wang, J. Wang, H. Li, Raman scattering from ZnTe nanocrystals depending on different excitation wavelengths. Key Engineering Materials, 538, (Yuan Ming Huang, 2013) p. 34. https://doi.org/https://doi.org/10.4028/www.scientific.net/KEM.538.34.

  16. M. Bazarganipour, M. Salavati-Niasari, Fabrication and characterisation of nanostructure zinc telluride by the hydrothermal method. Micro. Nano. Lett. 7(5), 388–391 (2012). https://doi.org/10.1049/mnl.2012.0074

    Article  CAS  Google Scholar 

  17. B.B. Wang, M.K. Zhu, H. Wang, G.B. Dong, Study on growth and photoluminescence of zinc telluride crystals synthesized by hydrothermal method. Opt. Mater. 34(1), 42–47 (2011). https://doi.org/10.1016/j.optmat.2011.07.017

    Article  CAS  Google Scholar 

  18. M.F. Ehsan, M.N. Ashiq, T. He, Hollow and mesoporous ZnTe microspheres: synthesis and visible-light photocatalytic reduction of carbon dioxide into methane. RSC Adv. 5(8), 6186–6194 (2015). https://doi.org/10.1039/C4RA13593H

    Article  CAS  Google Scholar 

  19. J.I. Langford, A.J.C. Wilson, Sherrer after Sixty Years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  20. B. Troudi, O. Halimi, M. Sebais, B. Boudine, A. Djebli, Synthesis, structural and optical properties of CuO nanocrystals embedded in polyvinyl chloride (pvc) thin films. Intern. J. Mech. Prod. Eng. 5(2), 115–119 (2017)

    Google Scholar 

  21. B. Kayyarapu, M.Y. Kumar, H. BashaMohommad, G.O. Neeruganti, R. Chekuri, Structural, thermal and optical properties of pure and Mn2+ Doped poly(vinyl chloride) films. Mater. Res. 19(5), 1167–1175 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0239

    Article  CAS  Google Scholar 

  22. M. Biswas, S. Moitra, Synthesis and some properties of PVC-bound dimethylglyoxime complexes of Co(II), Ni(II), and Cu(II). J. Appl. Polym. Sci. 38(7), 1243–1252 (1989). https://doi.org/10.1002/app.1989.070380705

    Article  CAS  Google Scholar 

  23. A. De Lorenzi, S. Giorgianni, R. Bini, High-resolution FTIR spectroscopy of the C—Cl stretching mode of vinyl chloride. Molecular Physics: An Intern. J. Interface Between Chem. Phys. 96(1), 101–108 (1999). https://doi.org/10.1080/00268979909482942

    Article  Google Scholar 

  24. I. Fleming, D. Williams, Spectroscopic Methodsin Organic Chemistry, 7th edn. (Springer International Publishing, Cham, 2019), p. 99

    Book  Google Scholar 

  25. M. Conradi, M. Zorko, I. Jerman, B. Orel, I. Verpoest, Mechanical properties of high density packed silica/poly(vinyl chloride) composites. Polym. Eng. Sci. 53(7), 1448–1453 (2013). https://doi.org/10.1002/pen.23412

    Article  CAS  Google Scholar 

  26. M. Hasan, A.N. Banerjee, M. LEE, Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2-PVC nanocomposite films, bull. Mater. Sci. 38(2), 283–290 (2015). https://doi.org/10.1007/s12034-014-0831-6

    Article  CAS  Google Scholar 

  27. A. Tawansi, H.M. Zidan, Y. Moustafa, A.H. Eldumiaty, Optical and electrical properties of NiCl2 filled PVC films. Phys. Scr. 55(2), 243–246 (1997). https://doi.org/10.1088/0031-8949/55/2/015

    Article  CAS  Google Scholar 

  28. B.F. Mantel, M. Stammler, J. Ristein, L. Ley, The correlation between surface conductivity and adsorbate coverage on diamond as studied by infrared spectroscopy. Diam. Relat. Mater. 10(3–7), 429–433 (2001). https://doi.org/10.1016/S0925-9635(00)00601-4

    Article  CAS  Google Scholar 

  29. A.M. Shehap, D.S. Akil, Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectron. Mater. 9(1), 17–36 (2016)

    Google Scholar 

  30. L. Berzina-Cimdina, N. Borodajenko, Research of Calcium Phosphates Using Fourier Transform, in Infrared Spectroscopy Materials Science Engineering and Technology. ed. by T. Theophanides (In Tech, USA, 2012), p. 141

    Google Scholar 

  31. A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. PolymerBulletin 77, 6005–6016 (2020). https://doi.org/10.1007/s00289-019-03059-51-3

    Article  CAS  Google Scholar 

  32. S. Narita, H. Harada, K. Nagasaka, Optical properties of Zinc telluride in the infrared. J. Phys. Soc. Jpn. 22, 1176–1182 (1967). https://doi.org/10.1143/JPSJ.22.1176

    Article  CAS  Google Scholar 

  33. R.K. Ram, S.S. Kushwaha, J.S. Rajput, Optical investigations of lattice vibrations of II-VI compounds semiconductors. J. Phys. Soc. Jpn. 58(11), 4032–4040 (1989). https://doi.org/10.1143/JPSJ.58.4032

    Article  CAS  Google Scholar 

  34. K.A. Prokhorov, D.A. Aleksandrova, E.A. Sagitova, G.Y. Nikolaeva, T.V. Vlasova, P.P. Pashinin, C.A. Jones, S.J. Shilton, Raman spectroscopy evaluation of polyvinylchloride structure. J. Phys: Conf Ser. 691, 012001 (2016). https://doi.org/10.1088/1742]6596/691/1/01200

    Article  Google Scholar 

  35. A. Dwivedi, V. Baboo, A. Bajpai, Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: a complete quantum chemical study. J. Theor. Chem. 2015(4), 1–11 (2015). https://doi.org/10.1155/2015/345234

    Article  Google Scholar 

  36. T.A. Taha, Z. Ismail, M.M. Elhawary, Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124, 307 (2018). https://doi.org/10.1007/s00339-018-1731-1

    Article  CAS  Google Scholar 

  37. V. Ludwig, Z.M.D.C. Ludwig, M.M. Rodrigues, V. Anjos, C.B. Costa, D.R.S.A. da Dores, V.R. da Silva, F. Soares, Analysis by Raman and infrared spectroscopy combined with theoretical studies on the identification of plasticizer in PVC films. Vib. Spectrosc. 98, 134–138 (2018). https://doi.org/10.1016/j.vibspec.2018.08.004

    Article  CAS  Google Scholar 

  38. J. Sacristan, J. Sacristán, C. Mijangos, H. Reinecke, S. Spells, J. Yarwood, Selective surface modification of PVC films as revealed by confocal Raman microspectroscopy. Macromolecules 33(16), 6134–6139 (2000). https://doi.org/10.1021/ma000272m

    Article  CAS  Google Scholar 

  39. D. Holec, P. Dumitraschkewitz, D. Vollath, F.D. Fischer, Surface energy of Au nanoparticles depending on their size and shape. Nanomaterials 10(3), 484 (2020). https://doi.org/10.3390/nano10030484

    Article  CAS  PubMed Central  Google Scholar 

  40. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdellah, Investigation of energy band gap inpolymer/ZnO nanocomposites. J Mater Sci: Mater Electron 27, 9804–9811 (2016). https://doi.org/10.1007/s10854-016-5046-8

    Article  CAS  Google Scholar 

  41. A.M. El Sayed, S. El-Sayed, W.M. Morsi, S. Mahrous, A. Hassen, Synthesis, characterization, optical and dielectric properties of polyvinyl chloride/cadmium oxide nanocomposite films. Polym. Compos. 35(9), 1842–1851 (2014). https://doi.org/10.1002/pc.22839

    Article  CAS  Google Scholar 

  42. A. Hassen, S. El-Sayeda, W.M. Morsi, A.M. El Sayed, Preparation dielectric and optical properties of Cr2O3/PVC nanocomposite films. J. Adv. Phys. 4(3), 571–584 (2014). https://doi.org/10.24297/jap.v4i3.1983

    Article  Google Scholar 

  43. T.A. Taha, Optical Properties of PVC/Al2O3 nanocomposite films. Polym. Bull. 76, 903–918 (2019). https://doi.org/10.1007/s00289-018-2417-8

    Article  CAS  Google Scholar 

  44. A.A. Al-Muntaser, A.M. Abdelghany, E.M. Abdelrazek, A.G. Elshahawy, Enhancement of optical and electrical properties of PVC/PMMA blend films doped with Li4Ti5O12 nanoparticles. J. MATER. RES. TECHNOL. 9(1), 789–797 (2020). https://doi.org/10.1016/j.jmrt.2019.11.019

    Article  CAS  Google Scholar 

  45. T.A. Taha, Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J. Mater. Sci.: Mater. Electron 28, 12108–12114 (2017). https://doi.org/10.1007/s10854-017-7024-1

    Article  CAS  Google Scholar 

  46. N.S. Allen, M. Edge, M. Rodriguez, C.M. Liauw, E. Fontan, Aspects of the thermal oxidation of ethylene vinyl acetate copolymer. Polym. Degrad. Stab. 68(3), 363–371 (2000). https://doi.org/10.1016/s01413910(00)00020-3

    Article  CAS  Google Scholar 

  47. S. Giuffrida, G.G. Condorelli, L.L. Costanzo, G. Ventimiglia, A. Di Mauro, I.L. Fragala, In situ synthesis of photoluminescent films of PVC doped with Ce3+ ion. J. Photochem. Photobiol. A Chem. 195(2–3), 215–222 (2008). https://doi.org/10.1016/j.jphotochem.2007.10.005

    Article  CAS  Google Scholar 

  48. L. Lakhal, F. Mezrag, N. Bouarissa, Quantum Confinement effects on physical properties of ZnTe spherical quantum dots. Acta Phys. Polonica A. 137(4), 451–453 (2020). https://doi.org/10.12693/APhysPolA.137.451

    Article  CAS  Google Scholar 

  49. F. Ahmed, A. En Naciri, J.J. Grob, M. Stchakovsky, L. Johann, Dielectric function of ZnTe nanocrystals by spectroscopic ellipsometry. Nanotechnology 20(30), 305702 (2009). https://doi.org/10.1088/0957-4484/20/30/305702

    Article  CAS  PubMed  Google Scholar 

  50. Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38(14), 9797 (1988)

    Article  CAS  Google Scholar 

  51. W. Wang, A.S. Lin, J.D. Phillips, Intermediate-band photovoltaic solar cell based on ZnTe:O. Appl. Phys. Lett. 95, 011103 (2009). https://doi.org/10.1063/1.3166863

    Article  CAS  Google Scholar 

  52. J. Tauc, Optical Properties of Amorphous Semiconductors Amorphous and Liquid Semiconductors (Springer, MA, 1974), pp. 159–220

    Book  Google Scholar 

  53. M. Hasan, A.N. Banerjee, M. Lee, Enhanced thermo-optical performance and high BET surface area of graphene@PVC nanocomposite fibers prepared by simple facile deposition technique: N2 Adsorption study. J. Ind. Eng. Chem. 21, 828–834 (2015). https://doi.org/10.1016/j.jiec.2014.04.019

    Article  CAS  Google Scholar 

  54. A.A.A. Aziz, A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real sample. J. Lumin. 143, 663–669 (2013). https://doi.org/10.1016/j.jlumin.2013.06.020

    Article  CAS  Google Scholar 

  55. A.C. Somersall, J.E. Guillet, Photoluminescence of Synthetic Polymers. J. Macromol. Sci.Part C 13(2), 135–187 (1975). https://doi.org/10.1080/15321797508080008

    Article  Google Scholar 

  56. N.S. Eremina, K.M. Degtyarenko, R.M. Gadirov, T.N. Kopylova, G.V. Mayer, L.G. Samsonova, V.F. Shul’gin, A.N. Gusev, S.B. Meshkova, D.N. Usachev, Luminescence of Zn2L2- and PVC-Based Organic Molecular Compositions Under Photo- and Electroexcitation. Rus. Phys. J. 53(5), 533–538 (2010). https://doi.org/10.1007/s11182-010-9454-6

    Article  CAS  Google Scholar 

  57. G. Teyssedre, H. Reinecke, T. Corrales, R. Navarro, N. Garcıa, P. Tiemblo, Study of secondary relaxations in poly(vinyl chloride) by phosphorescence decay Effect of the chemical structure and the concentration of luminescent probes. J. Photochem. Photobiol. A 187(2–3), 222–232 (2007). https://doi.org/10.1016/j.jphotochem.2006.10.021

    Article  CAS  Google Scholar 

  58. A.G. Graeme, Characterization of solid polymers by luminescence techniques. Pure. Appl. Chem. 57(7), 945–954 (1985). https://doi.org/10.1351/pac198557070945

    Article  Google Scholar 

  59. J.T. Mullins, F. Dierre, D.P. Halliday, B.K. Tanner, I. Radley, Z. Kang, C.J. Summers, Structural and optical properties of oxygen doped single crystal ZnTe grown by multi-tube physical vapour transport. J. Mater. Sci.: Mater. Electron 28, 11950–11960 (2017). https://doi.org/10.1007/s10854-017-7004-5

    Article  CAS  Google Scholar 

  60. J. Li, J. Ye, F. Ren, D. Tang, Y. Yang, K. Tang, S. Gu, R. Zhang, Y. Zheng, Distinct enhancement of sub band gap photoresponse through intermediate band in high dose implanted ZnTe: o alloys. Sci. Rep. 7, 44399 (2017). https://doi.org/10.1038/srep44399

    Article  PubMed  PubMed Central  Google Scholar 

  61. R.R. Shamilov, V.I. Nuzhdin, V.F. Valeev, Y.G. Galyametdinov, A.L. Stepanov, Photoluminescence of composite films of poly(N-vinylcarbazole) with CdSe/CdS core/shell quantum dots located near the layer of silver nanoparticles on a dielectric material. J. Appl. Spectrosc. 82(5), 773–778 (2015). https://doi.org/10.1007/s10812-015-0179-8

    Article  CAS  Google Scholar 

  62. B. D’Andrade, S.R. Forrest, Formation of triplet excimers and dimers inamorphous organic thin films and light emitting devices. Chem. Phys. 286(2), 321–335 (2003). https://doi.org/10.1016/S0301-0104(02)00921-7

    Article  Google Scholar 

  63. H. Mattoussi, H. Murata, C.D. Merritt, Y. Iizumi, J. Kido, Z.H. Kafafi, Photoluminescence quantum yield of pure and molecularly doped organic solid films. J. Appl. Phys. 86(5), 2642 (1999). https://doi.org/10.1063/1.371104

    Article  CAS  Google Scholar 

  64. C. Inui, H. Kura, T. Sato, Y. Tsuge, S. Shiratori, H. Ohkita, A. Tagaya, Y. Koike, Preparation of nanocomposite for optical application using ZnTe nanoparticles and a zero-birefringence polymer. J. Mater. Sci. 42, 8144–8149 (2007). https://doi.org/10.1007/s10853-007-1712-9

    Article  CAS  Google Scholar 

  65. A.C. Rastogi, K.L. Chopra, Electrical conduction mechanism in solution grown thin polyvinyl chloride (PVC) film. Thin Solid Film 26(1), 61–76 (1975). https://doi.org/10.1016/0040-6090(75)90167-4

    Article  CAS  Google Scholar 

  66. M. Nedjar, A. Béroual, A. Boubakeur, Influence of thermal aging on the electrical properties of poly(vinyl chloride). J. Appl. Polym. Sci. 102(5), 4728–4733 (2006). https://doi.org/10.1002/app.24874

    Article  CAS  Google Scholar 

  67. G. Wypych, PVC Properties, 3rd edn. (Elsevier, New York, 2020), p. 34

    Google Scholar 

  68. A.M. Bishai, F.A. Gamil, F.A. Awni, B.H.F. Al-Khayat, Dielectric and mechanical properties of Poly(Vinyl Chloride)-dioctylphthalate systems. J. Appl. Polym. Sci. 30(5), 2009–2020 (1985). https://doi.org/10.1002/app.1985.070300518

    Article  CAS  Google Scholar 

  69. S.K. Bhattacharyya, S.K. De, S. Basu, Studies on poly(viny1 chloride)-copper composites. Part 2: SEM studies of the fracture surfaces. Polym. Eng. Sci. 19(8), 533–539 (1979). https://doi.org/10.1002/pen.760190802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benyahia El-Hachemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hachemi, B., Miloud, S., Sabah, M. et al. Structural, Electrical and Optical Properties of PVC/ZnTe Nanocomposite Thin Films. J Inorg Organomet Polym 31, 3637–3648 (2021). https://doi.org/10.1007/s10904-021-01994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01994-3

Keywords

Navigation