Skip to main content

Advertisement

Log in

Synthesis and characterization of as-grown doped polymerized (PMMA-PVA)/ZnO NPs hybrid thin films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We report the optical, lattice dynamical, and thermal characterization of the poly-methyl-meth-acrylate (PMMA) and poly-vinyl-alcohol (PVA) doped with (wt% = 2%, 4%, 8%, and 16%) of zinc oxide nanoparticles (ZnO NPs) deposited on glass substrate. The optical properties of as-prepared (PMMA-PVA)/ZnO NPs hybrid thin films such as transmittance (T%), reflectance (R%), absorption coefficient (α), optical constants (n and k), and optical dielectric functions (ε1 and ε2) are deduced using the experimental transmittance and reflectance spectra. Furthermore, a combination of classical models such as Tauc, Urbach, Spitzer–Fan, and Drude models are utilized to calculate the optical and optoelectronic parameters and the band gap of the as-grown nanocomposite thin films. Calculated refractive indices (n) of pure PMMA-PVA polymeric thin films are found to lie in the range (1.5–1.85). We found the optical band gap of PMMA-PVA thin film to be 4.101 eV. Introducing ZnO NPs into PMMA-PVA polymeric matrix leads to a noticeable decrease of the optical band gap. Furthermore, Fourier transform infrared spectroscopy (FTIR) transmittance spectra are measured and interpreted in the spectral range (500–4000 cm−1) to identify the vibrational bands associated with the formation, rotation, and twisting of different bonds. Thermogravimetric analysis (TGA) is performed to test the thermal stability of as-grown thin films. We found that as-grown thin films are thermally stable below 110 °C. Therefore, realistic, scaled and practical devices based on doped polymerized films can be fabricated. Tuning optical, chemical, and thermal properties is of prime importance for the fabrication of state-of-the-art high-tech devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fan X, Lin L, Messersmith PB (2006) Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: a new route toward polymer–matrix nanocomposites. Compos Sci Technol 66:1198–1204

    Article  CAS  Google Scholar 

  2. Kuo M, Tsai C, Huang J, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys 90:185–195

    Article  CAS  Google Scholar 

  3. Hammani S, Barhoum A, Bechelany M (2018) Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties. J Mater Sci 53:1911–1921

    Article  CAS  Google Scholar 

  4. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B et al (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym 198:131–141

    Article  CAS  PubMed  Google Scholar 

  5. Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotechnol 11:1026

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Dan Y (2003) Preparation of PMMA/SiO2 composite particles via emulsion polymerization. Colloid Polym Sci 281:794–799

    Article  CAS  Google Scholar 

  7. Chen M, Wu L, Zhou S, You B (2004) Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method. Macromolecules 37:9613–9619

    Article  CAS  Google Scholar 

  8. Xu P, Wang H, Tong R, Du Q, Zhong W (2006) Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid Polym Sci 284:755–762

    Article  CAS  Google Scholar 

  9. Hong R, Fu H, Zhang Y, Liu L, Wang J, Li H et al (2007) Surface-modified silica nanoparticles for reinforcement of PMMA. J Appl Polym Sci 105:2176–2184

    Article  CAS  Google Scholar 

  10. Yeh J-M, Weng C-J, Liao W-J, Mau Y-W (2006) Anticorrosively enhanced PMMA–SiO2 hybrid coatings prepared from the sol–gel approach with MSMA as the coupling agent. Surface Coatings Technol 201:1788–1795

    Article  CAS  Google Scholar 

  11. M. Ohring, Materials science of thin films. Academic press, 2001.

  12. A. Al.Sanableh, "structural and Optical Properties of ZnO Thin Films Deposited by Sol Gel Caoting Technique," Manter Degree, Physics Department, Jordan University of Science and Technology Irbid, 2006.

  13. Kim SS, Park TS, Shin BC, Kim YB (2005) Polymethyl methacrylate/montmorillonite nanocomposite beads through a suspension polymerization-derived process. J Appl Polym Sci 97:2340–2349

    Article  CAS  Google Scholar 

  14. Yeum J-H, Deng Y (2005) Synthesis of high molecular weight poly (methyl methacrylate) microspheres by suspension polymerization in the presence of silver nanoparticles. Colloid Polym Sci 283:1172–1179

    Article  CAS  Google Scholar 

  15. Otanicar TP, DeJarnette D, Hewakuruppu Y, Taylor RA (2016) Filtering light with nanoparticles: a review of optically selective particles and applications. Adv Opt Photon 8:541–585

    Article  Google Scholar 

  16. Zheng J, Zhu R, He Z, Cheng G, Wang H, Yao K (2010) Synthesis and characterization of PMMA/SiO2 nanocomposites by in situ suspension polymerization. J Appl Polym Sci 115:1975–1981

    Article  CAS  Google Scholar 

  17. Mohammed M (2018) Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend. J Mol Struct 1169:9–17

    Article  CAS  Google Scholar 

  18. T. Siddaiah, P. Ojha, N. O. Kumar, and C. Ramu, "Structural, optical and thermal characterizations of PVA/MAA: EA polyblend films," Mater Res vol. 21, 2018.

  19. Menazea A, Mostafa AM, Al-Ashkar EA (2020) Effect of nanostructured metal oxides (CdO, Al2O3, Cu2O) embedded in PVA via Nd: YAG pulsed laser ablation on their optical and structural properties. J Mol Struct 1203:127374

    Article  CAS  Google Scholar 

  20. Mansour A, Mansour S, Abdo M (2015) Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J Appl Phys 7:60–69

    Google Scholar 

  21. Hemalatha K, Rukmani K, Suriyamurthy N, Nagabhushana B (2014) Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446

    Article  CAS  Google Scholar 

  22. Ghosh S, Srivastava P, Pandey B, Saurav M, Bharadwaj P, Avasthi D et al (2008) Study of ZnO and Ni-doped ZnO synthesized by atom beam sputtering technique. Appl Phys A 90:765–769

    Article  CAS  Google Scholar 

  23. Das BK, Das T, Parashar K, Parashar S, Kumar R, Choudhary HK et al (2019) Investigation of structural, morphological and NTCR behaviour of Cu-doped ZnO nanoceramics synthesized by high energy ball milling. Mater Chem Phys 221:419–429

    Article  CAS  Google Scholar 

  24. Das T, Das BK, Parashar K, Parashar S (2018) Modulus Spectroscopy and ac Conductivity of Zn1− xCaxO Ceramics. Adv Sci Lett 24:5703–5707

    Article  Google Scholar 

  25. Karpina V, Lazorenko V, Lashkarev C, Dobrowolski V, Kopylova L, Baturin V et al (2004) Zinc oxide–analogue of GaN with new perspective possibilities. Cryst Res Technol J Exp Ind Crystallogr 39:980–992

    Article  CAS  Google Scholar 

  26. Hassan N, Hashim M, Al-Douri Y, Al-Heuseen K (2012) Current dependence growth of ZnO nanostructures by electrochemical deposition technique. Int J Electrochem Sci 7:4625–4635

    CAS  Google Scholar 

  27. Al-Douri Y, Reshak AH, Ahmed WK, Ghazai AJ (2014) Structural and optical investigations of In doped ZnO binary compound. Mater Express 4:159–164

    Article  CAS  Google Scholar 

  28. Al-Douri Y, Haider A, Reshak A, Bouhemadou A, Ameri M (2016) Structural investigations through cobalt effect on ZnO nanostructures. Optik 127:10102–10107

    Article  CAS  Google Scholar 

  29. Al-Bataineh QM, Alsaad A, Ahmad A, Al-Sawalmih A (2019) Structural, Electronic and Optical Characterization of ZnO Thin Film-Seeded Platforms for ZnO Nanostructures: Sol-Gel Method Versus Ab Initio Calculations. J Electron Mater 48:5028–5038

    Article  CAS  Google Scholar 

  30. Wang Z-S, Huang C-H, Huang Y-Y, Hou Y-J, Xie P-H, Zhang B-W et al (2001) A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem Mater 13:678–682

    Article  CAS  Google Scholar 

  31. Lin H-M, Tzeng S-J, Hsiau P-J, Tsai W-L (1998) Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostruct Mater 10:465–477

    Article  CAS  Google Scholar 

  32. Xu J, Pan Q, Tian Z (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sens Actuators B Chem 66:277–279

    Article  CAS  Google Scholar 

  33. Curri M, Comparelli R, Cozzoli P, Mascolo G, Agostiano A (2003) Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye. Mater Sci Eng C 23:285–289

    Article  Google Scholar 

  34. Kamat PV, Huehn R, Nicolaescu R (2002) A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106:788–794

    Article  CAS  Google Scholar 

  35. Seung BP, Yun CK (1997) Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis. J Aerosol Sci 1001:S473–S474

    Google Scholar 

  36. Feldmann C (2003) Polyol-mediated synthesis of nanoscale functional materials. Adv Funct Mater 13:101–107

    Article  CAS  Google Scholar 

  37. Zheng M, Zhang L, Li G, Shen W (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363:123–128

    Article  CAS  Google Scholar 

  38. Wu R, Xie C (2004) Formation of tetrapod ZnO nanowhiskers and its optical properties. Mater Res Bull 39:637–645

    Article  CAS  Google Scholar 

  39. Kitano M, Shiojiri M (1997) Benard convection ZnO/resin lacquer coating—a new approach to electrostatic dissipative coating. Powder Technol 93:267–273

    Article  CAS  Google Scholar 

  40. Kim JH, Choi WC, Kim HY, Kang Y, Park Y-K (2005) Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in a micro precipitator. Powder Technol 153:166–175

    Article  CAS  Google Scholar 

  41. Damonte L, Zélis LM, Soucase BM, Fenollosa MH (2004) Nanoparticles of ZnO obtained by mechanical milling. Powder Technol 148:15–19

    Article  CAS  Google Scholar 

  42. Zhao X, Zheng B, Li C, Gu H (1998) Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis. Powder Technol 100:20–23

    Article  CAS  Google Scholar 

  43. Hong R, Xu L, Ren Z, Lin X, Li H (2005) Nanosized zinc oxide prepared by homogeneous precipitation and its photocatalytic property. Environ Prot Chem Ind 23:231–234

    Google Scholar 

  44. Alsaad A, Bataineh QM, Ahmad A, yousef Jum’h I, Alaqtash N, Bani-Salameh A (2020) Optical properties of transparent PMMA-PS/ZnO NPs polymeric nanocomposite films: UV-Shielding applications. Mater Res Express

  45. Hajibeygi M, Maleki M, Shabanian M, Ducos F, Vahabi H (2018) New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl Surf Sci 439:1163–1179

    Article  CAS  Google Scholar 

  46. Alami ZY, Salem M, Gaidi M (2018) Structural, optical and electrical characterizations of ZnO/PS. In: MATEC web of conferences, 2018, p 00013

  47. Hemalatha K, Rukmani K (2017) Concentration dependent dielectric, AC conductivity and sensing study of ZnO-polyvinyl alcohol nanocomposite films. Int J Nanotechnol 14:961–974

    Article  CAS  Google Scholar 

  48. Ahmad A, Alsaad A, Al-Bataineh Q, Al-Naafa M (2018) Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl Phys A 124:458

    Article  Google Scholar 

  49. Kittel C (1986) Introduction to solid state physics, 6th edn., translated by Y, Uno, N. Tsuya, A. Morita and J. Yamashita,(Maruzen, Tokyo, 1986) pp, pp 124–129

  50. Jin ZC, Hamberg I, Granqvist C (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64:5117–5131

    Article  CAS  Google Scholar 

  51. Mir FA (2014) Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism. Results Phys 4:103–104

    Article  Google Scholar 

  52. Fasasi A, Osagie E, Pelemo D, Obiajunwa E, Ajenifuja E, Ajao J et al (2018) Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am J Mater Synth Process 3:12–22

    Google Scholar 

  53. Spitzer W, Fan H (1957) Determination of optical constants and carrier effective mass of semiconductors. Phys Rev 106:882

    Article  CAS  Google Scholar 

  54. Hassanien AS (2016) Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50− xSex thin films. J Alloy Compd 671:566–578

    Article  CAS  Google Scholar 

  55. Farag A, Ashery A, Shenashen M (2012) Optical absorption and spectrophotometric studies on the optical constants and dielectric of poly (o-toluidine)(POT) films grown by spin coating deposition. Phys B 407:2404–2411

    Article  CAS  Google Scholar 

  56. Ibupoto Z, Khun K, Beni V, Liu X, Willander M (2013) Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications. Sensors 13:7926–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun F, Hung H-C, Sinclair A, Zhang P, Bai T, Galvan DD et al (2016) Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat Commun 7:1–9

    Article  Google Scholar 

  58. Huang CL, Steele TW, Widjaja E, Boey FY, Venkatraman SS, Loo JS (2013) The influence of additives in modulating drug delivery and degradation of PLGA thin films. NPG Asia Mater 5:e54–e54

    Article  CAS  Google Scholar 

  59. Harrison RH, Steele JA, Chapman R, Gormley AJ, Chow LW, Mahat MM et al (2015) Modular and versatile spatial functionalization of tissue engineering scaffolds through fiber-initiated controlled radical polymerization. Adv Funct Mater 25:5748–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Green MA (2007) Thin-film solar cells: review of materials, technologies and commercial status. J Mater Sci Mater Electron 18:15–19

    Article  Google Scholar 

  61. Lin J, Guo J, Liu C, Guo H (2016) Ultrahigh-performance Cu2ZnSnS4 thin film and its application in microscale thin-film lithium-ion battery: comparison with SnO2. ACS Appl Mater Interfaces 8:34372–34378

    Article  CAS  PubMed  Google Scholar 

  62. Ross CA, Berggren KK, Cheng JY, Jung YS, Chang JB (2014) Three-dimensional nanofabrication by block copolymer self-assembly. Adv Mater 26:4386–4396

    Article  CAS  PubMed  Google Scholar 

  63. Hashizume M, Murata Y, Iijima K, Shibata T (2016) Drug loading and release behaviors of freestanding polysaccharide composite films. Polym J 48:545–550

    Article  CAS  Google Scholar 

  64. Rahman A (2013) Medico-ethnobotany: a study on the tribal people of Rajshahi Division, Bangladesh. Peak J Med Plants Res 1:1–8

    Google Scholar 

  65. Kim JH, Jang J, Zin W-C (2001) Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 17:2703–2710

    Article  CAS  Google Scholar 

  66. Fedorchenko AI, Wang A-B, Cheng HH (2009) Thickness dependence of nanofilm elastic modulus. Appl Phys Lett 94:152111

    Article  Google Scholar 

  67. Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ (2013) Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 54:4059–4077

    Article  CAS  Google Scholar 

  68. Laroche G, Fitremann J, Gherardi N (2013) FTIR-ATR spectroscopy in thin film studies: the importance of sampling depth and deposition substrate. Appl Surf Sci 273:632–637

    Article  CAS  Google Scholar 

  69. Wang Y, Ge S, Rafailovich M, Sokolov J, Zou Y, Ade H (2004) ning, JL; Lustiger, A.; Maron, G. Macromolecules 37:3319

    Article  CAS  Google Scholar 

  70. Ohta K, Iwamoto R (1985) Experimental proof of the relation between thickness of the probed surface layer and absorbance in FT-IR/ATR spectroscopy. Appl Spectrosc 39:418–425

    Article  CAS  Google Scholar 

  71. Ramin MA, Le Bourdon G, Daugey N, Bennetau B, Vellutini L, Buffeteau T (2011) PM-IRRAS investigation of self-assembled monolayers grafted onto SiO2/Au substrates. Langmuir 27:6076–6084

    Article  CAS  PubMed  Google Scholar 

  72. Baibarac M, Cochet M, Łapkowski M, Mihut L, Lefrant S, Baltog I (1998) SERS spectra of polyaniline thin films deposited on rough Ag, Au and Cu. Polymer film thickness and roughness parameter dependence of SERS spectra. Synth Met 96:63–70

    Article  CAS  Google Scholar 

  73. Kim J, Cho J, Seidler PM, Kurland NE, Yadavalli VK (2010) Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization. Langmuir 26:2599–2608

    Article  CAS  PubMed  Google Scholar 

  74. Song S, Chu R, Zhou J, Yang S, Zhang J (2008) Formation and tribology study of amide-containing stratified self-assembled monolayers: influences of the underlayer structure. J Phys Chem C 112:3805–3810

    Article  CAS  Google Scholar 

  75. Haider Mohammed Shanshool MY, Wan Mahmood Mat Yunus, bIbtisamYahya (2015) Abdullah Optical properties of PMMA/ZnO Nanocomposites as foils prepared by casting method. Aust J Basic Appl Sci

Download references

Acknowledgements

The authors would like to thank Jordan University of Science and Technology in Jordan for the support provided by the Deanship of Scientific Research on project No. 20180246 (Grant number: 282-2019). The authors would like to thank Prof. Borhan Albiss and Prof. M-Ali Al-Akhras for their help in using the facilities of the Center of Nanotechnology and the Lab. of Biomedical Physics.

Author information

Authors and Affiliations

Authors

Contributions

AMA, ARAD, and AAA were involved in the data curation, methodology, data acquisition, writing—original draft preparation, and software. ASAl-A was involved in the data curation, methodology, writing, reviewing and editing. QMAl-B was involved in the investigation, data acquisition and analysis, conceptualization, methodology, and supervision.

Corresponding author

Correspondence to A. M. Alsaad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaad, A.M., Al Dairy, A.R., Ahmad, A.A. et al. Synthesis and characterization of as-grown doped polymerized (PMMA-PVA)/ZnO NPs hybrid thin films. Polym. Bull. 79, 2019–2040 (2022). https://doi.org/10.1007/s00289-021-03600-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03600-5

Keywords

Navigation