Skip to main content
Log in

Fabrication and luminescent studies of near-spherical phosphor embedded epoxy-resin nanocomposite beads

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A facile method for feasible industrial production of long afterglow phosphor nanocomposites, in the form of small beads were developed that continuously emit visible light for >7 h to realize many innovative applications involving hard and soft surfaces. Green emitting SrAl2O4:Eu2+, Dy3+ (SRA) long afterglow phosphor was uniformly dispersed in the epoxy resin (ER) matrix in presence of organic surfactant as hardener to make phosphor-embedded viscous fluid that could then be solidified at room temperature (~25 °C) within few minutes. As ethyl alcohol (solvent) started evaporating, ethylene glycol (surfactant), which is the simplest amongst glycols, started adhering with SRA phosphor particles via van der Waals attraction. The homogeneity of dispersion strongly depends on the shape of SRA phosphor added to ER matrix and confirmed that the near-spherical is the best. The SRA phosphor–ER beads demonstrated an optimum ultraviolet (UV) excitation wavelength at 375 nm and a green-emission peak at 517 nm, where the latter one is due to the transitions from 4f65d1 to 4f7 energy levels of Eu2+ ions. The appearance of SRA phosphor–ER beads in translucent yellow-green color, bright green and green under ambient light, UV (375 nm) irradiation and in dark conditions, respectively was indicated using photoluminescence and colorimetric measurements. The SRA phosphor–ER beads exhibited highly durable, reversible and reproducible afterglow luminescence for longer durations. Photoluminescence, structural, morphological and afterglow properties of the prepared SRA phosphor–ER beads were investigated thoroughly. Moreover, these afterglow beads have several designing and crafting applications such as interior design, glowing toys, ornaments and tracking lights etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, T. Le Mercier, Chem. Mater. 17, 3904–3912 (2005). https://doi.org/10.1021/cm050763r

    Article  CAS  Google Scholar 

  2. I. Bite, G. Krieke, A. Zolotarjovs, K. Laganovska, V. Liepina, K. Smits, K. Auzins, L. Grigorjeva, D. Millers, L. Skuja, Mater. Des. 160, 794–802 (2018). https://doi.org/10.1016/j.matdes.2018.10.021

    Article  CAS  Google Scholar 

  3. D. Haranath, V. Shanker, H. Chander, J. Phys, D. Appl. Phys. 36, 2244–2248 (2003). https://doi.org/10.1088/0022-3727/36/18/012

    Article  CAS  Google Scholar 

  4. P.F. Smet, K. Van den Eeckhout, O.Q. De Clercq, D. Poelman, Persistent Phosphors, 1st ed., Elsevier B.V., (2015). https://doi.org/10.1016/B978-0-444-63483-2.00001-6

  5. A. Bessière, S.K. Sharma, N. Basavaraju, K.R. Priolkar, L. Binet, B. Viana, A.J.J. Bos, T. Maldiney, C. Richard, D. Scherman, D. Gourier, Chem. Mater. 26, 1365–1373 (2014). https://doi.org/10.1021/cm403050q

    Article  CAS  Google Scholar 

  6. T.A. Khattab, M.M.G. Fouda, M.S. Abdelrahman, S.I. Othman, M. Bin-Jumah, M.A. Alqaraawi, H. Al Fassam, A.A. Allam, J. Fluoresc. 29, 703–710 (2019). https://doi.org/10.1007/s10895-019-02384-2

    Article  CAS  PubMed  Google Scholar 

  7. T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Mater. Lett. 58, 352–356 (2004). https://doi.org/10.1016/S0167-577X(03)00499-3

    Article  CAS  Google Scholar 

  8. P. Zeng, X. Wei, M. Yin, Y. Chen, J. Lumin. 199, 400–406 (2018). https://doi.org/10.1016/j.jlumin.2018.03.088

    Article  CAS  Google Scholar 

  9. D.M.T. Mustafa, S. Rostam, S.B. Aziz, Adv. Mate. Sci. Engg. 2020, 7914796 (2020). https://doi.org/10.1155/2020/7914796

    Article  CAS  Google Scholar 

  10. R. Kumar, S. Mohanty, S.K. Nayak, Mate. Today. Comm. 20, 100561 (2019). https://doi.org/10.1016/j.mtcomm.2019.100561

    Article  CAS  Google Scholar 

  11. W. Jilani, N. Fourati, C. Zerrouki, O.G. Lavallee, H. Gauermazi, J. Inorg, Organomet. Polym. (2018). https://doi.org/10.1007/s10904-018-1016-3

  12. A.A.C. Silva, T. Gomes, B.D.P. Martins, R.B.R. Gracia, L.D.S. Cividanes, E.Y. Kawachi, J. Inorg, Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01468-y

  13. P. Gao, L. Du, H. Luo, W. Rao, W. Deng, Y. Liu, C. Wei, C. Yu, J. Inorg, Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01160-w

  14. L. Tao, Z. Sun, W. Min, H. Ou, L. Qi, M. Yu, RSC Adv. 10, 1603 (2020). https://doi.org/10.1039/c9ra09183a

    Article  CAS  Google Scholar 

  15. T.A. Khattab, M. El-zawahry, M.A. El-aziz, S. Kamel, M.S. Abdelrahman, J. Lumin. 17, 1–8 (2019). https://doi.org/10.1002/bio.3752

    Article  CAS  Google Scholar 

  16. Z. Haitao, D. Yan, J. Jianqing, H. JinhuaM, Changwen. J. Rare Eart. 24, 160–161 (2006). https://doi.org/10.1016/S1002-0721(07)60349-4

    Article  Google Scholar 

  17. B. Ellis, Chemistry and Technology of Epoxy Resins, 1st edn. (Dordrecht, Springer, 1993). https://doi.org/10.1007/978-94-011-2932-9

    Book  Google Scholar 

  18. R. Kumar, S. Mohanty, S.K. Nayak, J. Mater. Today Commun. 20, 100561 (2019). https://doi.org/10.1016/j.mtcomm.2019.100561

    Article  CAS  Google Scholar 

  19. D. Sun, H.J. Sue, N. Miyatake, J. Phys, Chem. C. 112, 16002–16010 (2008). https://doi.org/10.1021/jp805104h

    Article  CAS  Google Scholar 

  20. G. Swati, S. Chawla, S. Mishra, B. Rajesh, N. Vijayan, B. Sivaiah, A. Dhar, D. Haranath, Appl. Surf. Sci. 333, 178–185 (2015). https://doi.org/10.1016/j.apsusc.2015.01.135

    Article  CAS  Google Scholar 

  21. H. Fan, E.W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M.C. Wilson, C.J. Brinker, Nano Lett. 5, 645–648 (2005). https://doi.org/10.1021/nl050017l

    Article  CAS  PubMed  Google Scholar 

  22. Y. Tian, Q. Wang, Y. Hu, H. Sun, Z. Cui, L. Kou, J. Cheng, Preparation and shape memory properties of rigid-flexible integrated epoxy resins via tunable micro-phase separation structures. J. Polymer. 178, 121592 (2019). https://doi.org/10.1016/j.polymer.2019.121592

    Article  CAS  Google Scholar 

  23. V. Vitola, D. Millers, K. Smits, I. Bite, A. Zolotarjovs, Opt. Mater. (2018). https://doi.org/10.1016/j.optmat.2018.06.004

  24. X. Li, Y. Qu, X. Xie, Z. Wang, R. Li, Mater. Lett. 60, 3673–3677 (2006). https://doi.org/10.1016/j.matlet.2006.03.081

    Article  CAS  Google Scholar 

  25. D. Norris, M. Bawendi, Phys. Rev. B - Condens. Matter Mater. Phys. 53, 16338–16346 (1996). https://doi.org/10.1103/PhysRevB.53.16338

    Article  CAS  Google Scholar 

  26. D.K. Yi, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.06.092

  27. B. Ellis, Chemistry and technology of epoxy resins, Springer Dordrecht, 1993, Ist doi: https://doi.org/10.1007/978-94-011-2932-9

  28. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu, G.P. López, C.J. Brinker, J. Science. 304, 567–571 (2004). https://doi.org/10.1126/science.1095140

    Article  CAS  Google Scholar 

  29. M. Kazes, T. Saraidarov, R. Reisfeld, U. Banin, J. Adv, Mater. 21, 1716–1720 (2009). https://doi.org/10.1002/adma.200802883

    Article  CAS  Google Scholar 

  30. D. Haranath, P. Sharma, H. Chander, A. Ali, N. Bhalla, S.K. Halder, J. Mater, Chem. Phys. 101, 163–169 (2007). https://doi.org/10.1016/j.matchemphys.2006.03.003

    Article  CAS  Google Scholar 

  31. S.D. Han, K.C. Singh, T.Y. Cho, H.S. Lee, D. Jakhar, J. Lumin. 128, 301–305 (2008). https://doi.org/10.1016/j.jlumin.2007.07.017

    Article  CAS  Google Scholar 

  32. H.N. Luitel, T. Watari, R. Chand, T. Torikai, M. Yada, J. Mater. 2013, 613090 (2012). https://doi.org/10.1155/2013/613090

    Article  CAS  Google Scholar 

  33. J. Niittykoski, T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, M. Parkkinen, M. Tukia, J. Alloys Compd. 374, 108–111 (2004). https://doi.org/10.1016/j.jallcom.2003.11.078

    Article  CAS  Google Scholar 

  34. J.S. Kim, M.E. Song, M.R. Joung, J.H. Choi, S. Nahm, S. Gu, J.H. Paik, B.H. Choi, J. Eur, Ceram. Soc. 30, 375–379 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.04.028

    Article  CAS  Google Scholar 

  35. A. Nag, T.R.N. Kutty, J. Mater, Res. Bullt. 39, 331–342 (2004). https://doi.org/10.1016/j.materresbull.2003.11.007

    Article  CAS  Google Scholar 

  36. D. Haranath, P. Sharma, H. Chanaer, J. Phys, D. Appl. Phys. 38, 371–375 (2005). https://doi.org/10.1088/0022-3727/38/3/003

    Article  CAS  Google Scholar 

  37. A.N. Georgobiani, V.B. Gutan, V.I. Demin, S.V. Semendyaev, J. Inorg, Mater. 45, 1289–1294 (2009). https://doi.org/10.1134/S0020168509110181

    Article  CAS  Google Scholar 

  38. H. Yamamoto, T. Matsuzawa, J. Lumin. 72–74, 287–289 (1997). https://doi.org/10.1016/S0022-2313(97)00012-4

    Article  Google Scholar 

  39. P. Sharma, D. Haranath, H. Chander, S. Singh, J. Appl, Surf. Sci. 254, 4052–4055 (2008). https://doi.org/10.1016/j.apsusc.2007.12.040

    Article  CAS  Google Scholar 

  40. G. Zheng, J. Wu, W. Wang, C. Pan, J. Carbon 42, 2839–2847 (2004). https://doi.org/10.1016/j.carbon.2004.06.029

    Article  CAS  Google Scholar 

  41. S. Ganguli, A.K. Roy, D.P. Anderson, J. Carbon 46, 806–817 (2008). https://doi.org/10.1016/j.carbon.2008.02.008

    Article  CAS  Google Scholar 

  42. C. Zhang, C. Deng, J. Lumin. 192, 310–315 (2017). https://doi.org/10.1016/j.jlumin.2017.04.068

    Article  CAS  Google Scholar 

  43. J. Shin, J. Opt, Laser Technol. 111, 307–314 (2019). https://doi.org/10.1016/j.optlastec.2018.10.008

    Article  CAS  Google Scholar 

  44. S.W. Ko, D. Shin, J. Electroceram. 23, 410–414 (2009). https://doi.org/10.1007/s10832-008-9479-1

    Article  CAS  Google Scholar 

  45. A.M. Rogov, V.I. Nuzhdin, V.F. Valeev, A.L. Stepanov, J. Compos, Commun. 19, 6–10 (2020). https://doi.org/10.1016/j.coco.2020.01.002

    Article  Google Scholar 

  46. T. Matsuzawa, J. Electrochem. Soc. 143, 2670 (2006). https://doi.org/10.1149/1.1837067

    Article  Google Scholar 

  47. C. Chang, Z. Yuan, D. Mao, J. Alloys Compd. 415, 220–224 (2006). https://doi.org/10.1016/j.jallcom.2005.04.219

    Article  CAS  Google Scholar 

  48. V.V. Jaiswal, S. Bishnoi, G. Swati, P. Singh, N. Lohia, S. Bathula, D. Haranath, Arab. J. Chem. 13, 474–480 (2020). https://doi.org/10.1016/j.arabjc.2017.05.020

    Article  CAS  Google Scholar 

  49. T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strȩk, J. Solid State Chem. 171, 114–122 (2003). https://doi.org/10.1016/S0022-4596(02)00194-9

    Article  CAS  Google Scholar 

  50. J. Botterman, P.F. Smet, J. Opt, Express. 23, A868–A881 (2015). https://doi.org/10.1364/OE.23.00A868

    Article  CAS  Google Scholar 

  51. K. Van den Eeckhout, P.F. Smet, D. Poelman, J. Mater. 3, 2536–2566 (2010). https://doi.org/10.3390/ma3042536

    Article  CAS  Google Scholar 

  52. P. Dorenbos, J. Electrochem, Soc. 152, 3–7 (2005). https://doi.org/10.1149/1.1926652

    Article  CAS  Google Scholar 

  53. T.A. Khattab, M. Rehan, T. Hamouda, J. Carbohydr, Polym. 195, 143–152 (2018). https://doi.org/10.1016/j.carbpol.2018.04.084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Directors of NIT-Warangal and CSIR-NPL New Delhi for extending the necessary laboratory facilities to carry out the research work. One of the authors (VVJ) is grateful to the Council of Scientific & Industrial Research (CSIR), Government of India for providing the financial support under CSIR-Senior Research Fellowship.

Funding

The work was funded by Council of Scientific & Industrial Research (CSIR), Government of India under the CSIR-Senior Research Fellowship Scheme No. #09/922(0007)/2018-EMR-1.

Author information

Authors and Affiliations

Authors

Contributions

CRediT roles of each author: 1. VVJ: Data curation; Formal analysis; Investigation; Roles/Writing - original draft; 2. DH: Conceptualization; Funding acquisition; Methodology; Supervision; Writing - review & editing.

Corresponding author

Correspondence to D. Haranath.

Ethics declarations

Conflict of interest

The authors declare that we do not have any conflicts of interest/competing interests related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, V.V., Haranath, D. Fabrication and luminescent studies of near-spherical phosphor embedded epoxy-resin nanocomposite beads. J Inorg Organomet Polym 31, 1590–1600 (2021). https://doi.org/10.1007/s10904-020-01851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01851-9

Keywords

Navigation