Skip to main content
Log in

Removal and Release of the 2,4,5-Trichlorophenoxyacetic Acid Herbicide from Wastewater by Layered Double Hydroxides

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The Zn2–Al layered double hydroxides (LDHs) have been used to remove the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) herbicide, which is used as a model for pesticides from the carboxylate family. The adsorption isotherms are governed by Langmuir model (L type). The characterization by various techniques (XRD, FTIR, SEM) indicates that the 2,4,5-T retention is governed by adsorption on the sites of the LDH surface when the molar ratio 2,4,5-T/Cl ≤ 0.1. For greater ratio values, the herbicide undergoes, in addition, intercalation in the LDH interlayer domain leading to an increase of the interlayer distance from 0.778 to 1.855 nm. The retention capacity reaches 718 mg/g with a removal rate of 96% for an optimal 2,4,5-T/Cl molar ratio of 0.5. This capacity is influenced by the solution pH, the charge density of the LDH sheets, the adsorbent/adsorbate molar ratio and the nature of the interlayer anion of the LDH precursor. The partial or total release of the herbicide was observed to depend on the composition of the desorbing solution. This suggests the possibility of LDH recycling and confirms thus its effectiveness in eliminating this type of pollutant from water. In addition, a well-structured [Zn2–Al-2,4,5-T] hybrid material was obtained after herbicide retention and its characterization by chemical analyses and SEM as well as a proposed structural model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.M. Bradberry, A.T. Proudfoot, A. Vale, Poisoning due to chlorophenoxy herbicides. Toxicol. Rev. 23(2), 65–73 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. R.S. Chhokar, S. Singh, R.K. Sharma, Herbicides for control of isoproturon-resistant littleseed canarygrass (Phalaris minor) in wheat. Crop Prot. 27, 719–726 (2008)

    Article  CAS  Google Scholar 

  3. D. Wang, F.N.D. Mukome, D. Yan, H. Wang, K.M. Scow, S.J. Parikh, Phenylurea herbicides sorption to biochars and agricultural soil. J. Environ. Sci. Health B 50, 544–551 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Giacomazzi, N. Cochet, Environmental impact of diuron transformation: a review. Chemosphere 56, 1021–1032 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. A. Silkina, A. Brazes, F. Vouve, V. Le Tilly, P. Douzenel, J.L. Mouget, N. Bourgougnon, Antifouling activity of macroalgal extracts on Fragilaria pinnata (Bacillariphyceae): a comparison with diuron. Aquat. Toxicol. 94, 245–254 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. S.J. Kalkhoff, D.W. Kolpin, E.M. Thurman, I. Ferrer, D. Barcelo, Degradation of chloroacetanilide herbicides: the prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters. Environ. Sci. Technol. 32, 1738–1740 (1998)

    Article  CAS  Google Scholar 

  7. A. Pandiarajan, R. Kamaraj, S. Vasudevan, OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresour. Technol. 261, 329–341 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. H. Kim Hue, L.V. Anh, D.B. Trong, Study of the adsorption of 2,4-dichlorophenoxyacetic acid from the aqueous solution onto activated carbon. Vietnam J. Chem. 56(2), 208–213 (2018)

    Article  Google Scholar 

  9. I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Appl. Catal B 42, 319–335 (2003)

    Article  CAS  Google Scholar 

  10. X. Zhu, C. Yuan, Y. Bao, J. Yang, Y. Wu, Photocatalytic degradation of pesticide pyridaben on TiO2 particles. Int. Nano Lett. 229, 95–105 (2005)

    CAS  Google Scholar 

  11. M.I. Badawy, M.Y. Ghaly, T.A. Gad-Allah, Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination 194, 166–175 (2006)

    Article  CAS  Google Scholar 

  12. M.V. Phanikrishna Sharma, V. Durga Kumari, V.M. Subrahmanyam, TiO2 supported over SBA-15: an efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 73, 1562–1569 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. N.T. Kim Phuong, M.W. Beak, B.T. Huy, Y.I. Lee, Adsorption and photodegradation kinetics of herbicide 2,4,5-trichlorophenoxyacetic acid with MgFeTi layered double hydroxides. Chemosphere 146, 51–59 (2019)

    Article  Google Scholar 

  14. S. Khalaf, J.H. Shoqeir, L. Scrano, R. Karaman, S.A. Bufo, T.A. Kurniawan, Removal of herbicides from water using heterogeneous photocatalysis case study: MCPA sodium monohydrate. J. Water Resour. Prot. 11, 1024–1035 (2019)

    Article  CAS  Google Scholar 

  15. S.F.A. Shattar, N.A. Zakaria, K.Y. Foo, Acid modified natural clay as a judicious solution for the successive treatment of ametryn. Desalin. Water Treat. 103, 270–279 (2018)

    Article  CAS  Google Scholar 

  16. J.S. Calisto, I.S. Pacheco, L.L. Freitas, L.K. Santana, W.S. Fagundes, F.A. Amaral, S.C. Canobre, Adsorption kinetic and thermodynamic studies of the 2,4–dichlorophenoxyacetate (2,4-D) by the [Co–Al–Cl] layered double hydroxide. Heliyon 5, e02553 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  17. A. Iglesias, R. López, D. Gondar, J. Antelo, S. Fiol, F. Arce, Adsorption of MCPA on goethite and humic acid-coated goethite. Chemosphere 78, 1403–1408 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. M. Eshete, J. Bowleg, S.G. Perales, M. Okunrobo, D. Watkins, H. Spencer, Adsorption of propazine, simazine and bisphenol A on the surface of nanoparticles of iron oxide nanoparticles of carbon and metallic oxides. J. Environ. Prot. 9, 13–24 (2018)

    Article  CAS  Google Scholar 

  19. J. Shah, M.R. Jan, I. Rahman, Dispersive solid phase microextraction of fenoxaprop-p-ethyl herbicide from water and food samples using magnetic graphene composite. J. Inorg. Organomet. Polym. 30, 1716–1725 (2020)

    Article  CAS  Google Scholar 

  20. A. Derylo-Marczewska, M. Blachnio, A.W. Marczewski, A. Swiatkowski, B. Tarasiuk, Adsorption of selected herbicides from aqueous solutions on activated carbon. J. Therm. Anal Calorim. 101, 785–794 (2010)

    Article  CAS  Google Scholar 

  21. W.T. Tsai, H.R. Chen, Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int. J. Environ. Sci. Technol. 10, 1349–1356 (2013)

    Article  CAS  Google Scholar 

  22. S.R. Shanmugam, S. Adhikari, H. Nam, V. Patil, Adsorption and desorption behavior of herbicide using bio-based materials. Trans. ASABE 62(6), 1435–1445 (2019)

    Article  CAS  Google Scholar 

  23. R. Kamaraj, S. Vasudevan, Facile one-pot electrosynthesis of Al(OH)3—kinetics and equilibrium modeling for adsorption of 2,4,5-trichlorophenoxyacetic acid from aqueous solution. New J. Chem. 40, 2249–2258 (2016)

    Article  CAS  Google Scholar 

  24. A.L. Gimsing, O.K. Borggaard, Effect of phosphate on the adsorption of glyphosate on soils, clay minerals and oxides. Int. J. Environ. Anal. Chem. 82, 545–552 (2002)

    Article  CAS  Google Scholar 

  25. E. Morillo, T. Undabeytia, A. Cabrera, J. Villaverde, C. Maqueda, Effect of soil type on adsorption−desorption, mobility, and activity of the herbicide norflurazon. J. Agric. Food Chem. 52, 884–890 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. I.A. Ololade, N.A. Oladoja, F.F. Oloye, F. Alomaja, D.D. Akerele, J. Iwaye, P. Aikpokpodion, Sorption of glyphosate on soil components: the roles of metal oxides and organic materials. Soil Sediment Contam. 23(5), 571–585 (2014)

    Article  CAS  Google Scholar 

  27. E.A.O. Pereira, V.F. Melo, G. Abate, J.C. Masini, Adsorption of glyphosate on Brazilian subtropical soils rich in iron and aluminum oxides. J. Environ. Sci. Health B 54, 906–914 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. M.H.B. Hayes, U. Mingelgrin, Interactions between small organic chemicals and soil colloidal constituents, in Interactions at the soil colloid-soil solution interface. ed. by G.H. Boyd et al. (Kluwer Academic Publishers, Dordrecht, 1991), pp. 323–407

    Chapter  Google Scholar 

  29. A. Ghafoor, N.J. Jarvis, T. Thierfelder, J. Stenstrom, Measurements and modelling of pesticide persistence in soil at the catchment scale. Sci. Total Environ. 409, 1900–1908 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. K.E. Hall, C. Ray, S.J. Ki, K.A. Spokas, W.C. Koskinen, Pesticide sorption and leaching potential on three Hawaiian soils. J. Environ. Manage. 159, 227–234 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. J.P.K. Gill, N. Sethi, A. Mohan, Analyses of the glyphosate herbicide in water, soil and food using derivatising agents. Environ. Chem. Lett. 15, 85–100 (2017)

    Article  CAS  Google Scholar 

  32. M. Hagner, J. Mikola, I. Saloniemi, K. Saikkonen, M. Helander, Effects of a glyphosate-based herbicide on soil animal trophic groups and associated ecosystem functioning in a northern agricultural field. Sci. Rep. 9, 8540 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  33. F. Lai, Y. Huang, Y. Miao, T. Liu, Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochim. Acta. 74, 456–463 (2015)

    Article  Google Scholar 

  34. A. Bialas, M. Mazur, P. Natkanski, B. Dudeka, M. Kozak, A. Wacha, P. Kustrowski, Hydrotalcite-derived cobalt–aluminum mixed oxide catalysts for toluene combustion. Appl. Surf. Sci. 362, 297–303 (2016)

    Article  CAS  Google Scholar 

  35. A.J. Khoei, N.J.G. Joogh, P. Darvishi, K. Rezaei, Application of physical and biological methods to remove heavy metal, arsenic and pesticides, malathion and diazinon from water. Turk. J. Fish. Aquat. Sci. 19, 21–28 (2019)

    Article  Google Scholar 

  36. H. Pourfarzad, M. Shabani-Nooshabadi, M.R. Ganjali, H. Kashani, Synthesis of Ni–Co–Fe layered double hydroxide and Fe2O3/Graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim. Acta. 317, 83–92 (2019)

    Article  CAS  Google Scholar 

  37. N. Ye, N. Cimetiere, V. Heim, N. Fauchon, C. Feliers, D. Wolbert, Upscaling fixed bed adsorption behaviors towards emerging micropollutants in treated natural waters with aging activated carbon: model development and validation. Water Res. 148, 30–40 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. V. Chivu, D. Gilea, N. Cioatera, G. Carja, M. Mureseanu, Heterostructures of Ce–Ti/layered double hydroxides and the derived MMOs for photoenergy applications. Appl. Surf. Sci. 513, 145853 (2020)

    Article  CAS  Google Scholar 

  39. L. Cocheci, L. Lupa, N.S. Ţolea, C. Muntean, P. Negrea, Sequential use of ionic liquid functionalized Zn–Al layered double hydroxide as adsorbent and photocatalyst. Sep. Purif. Technol. 250, 117104 (2020)

    Article  CAS  Google Scholar 

  40. A.V. Gorokhovsky, A.R. Tsiganov, T.V. Nikityuk, J.I. Escalante-Garcia, I.N. Burmistrov, V.G. Goffman, Synthesis and properties of nanocomposites in the system of potassium polytitanate—layered double hydroxide. J. Mater. Res. Technol. 9, 3924–3934 (2020)

    Article  CAS  Google Scholar 

  41. H. Nabipour, Design and evaluation of non-steroidal anti-inflammatory drug intercalated into layered zinc hydroxide as a drug delivery system. J. Inorg. Organomet. Polym. 29, 1807–1817 (2019)

    Article  CAS  Google Scholar 

  42. Y.H. Kotp, Enhancement of industrial effluents quality by using nanocomposite Mg/Al LDH ultrafiltration membranes. J. Inorg. Organomet. Polym. 30, 5244–5260 (2020)

    Article  Google Scholar 

  43. J. Yu, K. Ruengkajorn, D.G. Crivoi, C. Chen, J.C. Buffet, D. O’Hare, High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nat. Commun. 10, 2398 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  44. R. Zhang, Y. Ai, Z. Lu, Application of multifunctional layered double hydroxides for removing environmental pollutants: recent experimental and theoretical progress. J. Environ. Chem. Eng. 8, 103908 (2020)

    Article  CAS  Google Scholar 

  45. J. Das, B.S. Patra, N. Baliarsingh, K.M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl. Clay Sci. 32, 252–260 (2006)

    Article  CAS  Google Scholar 

  46. H. Zazou, N. Oturan, H. Zhang, M. Hamdani, M.A. Oturan, Comparative study of electrochemical oxidation of herbicide 2,4,5-T: kinetics, parametric optimization and mineralization pathway. Sustain. Environ. Res. 27, 15–23 (2017)

    Article  CAS  Google Scholar 

  47. B. Bukowska, 2,4,5-T and 2,4,5-TCP induce oxidative damage in human erythrocytes: the role of glutathione. Cell Biol. Int. 28, 557–563 (2004)

    Article  CAS  PubMed  Google Scholar 

  48. S. Miyata, The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties-I: the systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl−, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl− and Zn2+-Al3+-Cl−. Clays Clay Miner. 23, 369–375 (1975)

    Article  CAS  Google Scholar 

  49. G. Fan, W. Sun, H. Wang, F. Li, Visible-light-induced heterostructured Zn–Al–In mixed metal oxide nanocomposite photocatalysts derived from a single precursor. Chem. Eng. J. 174, 467–474 (2011)

    Article  CAS  Google Scholar 

  50. G.H. Eshaq, A.M. Rabie, A.A. Bakr, A.H. Mady, A.E. ElMetwally, Cr(VI) adsorption from aqueous solutions onto Mg-Zn-Al LDH and its corresponding oxide. Desalin. Water Treat. 57, 20377–20387 (2016)

    Article  CAS  Google Scholar 

  51. E. Elkhattabi, M. Lakraimi, M. Berraho, A. Legrouri, R. Hammal, L. El Gaini, Acid Green 1 removal from wastewater by layered double hydroxides. Appl. Water Sci. 8, 45 (2018)

    Article  Google Scholar 

  52. N. Iyi, T. Matsumoto, Y. Kanek, K. Kitamura, Deintercalation of carbonate ions from a hydrotalcite-like compound: enhanced decarbonation using acid-salt mixed solution. Chem. Mater. 16(15), 2926–2932 (2004)

    Article  CAS  Google Scholar 

  53. Z. Yan, B. Zhu, J. Yu, Z. Xu, Effect of calcination on adsorption performance of Mg–Al layered double hydroxide prepared by a water-in-oil microemulsion method. RSC Adv. 6, 50128–50137 (2016)

    Article  CAS  Google Scholar 

  54. M.A. Ahmad, N.A.A. Puad, O.S. Bello, Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour. Ind. 6, 18–35 (2014)

    Article  Google Scholar 

  55. K. Abdellaoui, I. Pavlovic, M. Bouhent, A. Benhamou, C. Barriga, A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Appl. Clay Sci. 143, 142–150 (2017)

    Article  CAS  Google Scholar 

  56. G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399–447 (2008)

    Article  CAS  Google Scholar 

  57. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 14, 3973–3993 (1960)

    Article  Google Scholar 

  58. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  59. A. Angelova, C. Ringard-Lefebvre, A. Baszkin, Drug–cyclodextrin association constants determined by surface tension and surface pressure measurements: I. Host–guest complexation of water soluble drugs by cyclodextrins: polymyxin B–β cyclodextrin system. J. Colloid Interface Sci. 212, 275–279 (1999)

    Article  CAS  PubMed  Google Scholar 

  60. R.V. Prikhodko, M.V. Sychev, I.M. Astrelin, K. Erdmann, A. Mangel, R.A. Santen, Synthesis and structural transformations of hydrotalcite like materials Mg-Al and Zn-Al. Russ. J. Appl. Chem. 10, 1621–1626 (2001)

    Article  Google Scholar 

  61. E.H. Mourid, M. Lakraimi, L. Benaziz, E.H. Elkhattabi, A. Legrouri, Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide. Appl. Clay Sci. 168, 87–95 (2019)

    Article  CAS  Google Scholar 

  62. R. Kamaraj, A. Pandiarajan, M.R. Gandhi, A. Shibayama, S. Vasudevan, Eco–friendly and easily prepared graphene nanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides. Chem. Select 2, 342–355 (2017)

    CAS  Google Scholar 

  63. S. Miyata, Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 31, 305–311 (1983)

    Article  CAS  Google Scholar 

  64. M. Pavlovic, R. Huber, M. Adok-Sipiczki, C. Nardin, I. Szilagyi, Ion specific effects on the stability of layered double hydroxide colloids. Soft Matter 12, 4024 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. T. Hibino, Anion selectivity of layered double hydroxides: effects of crystallinity and charge density. Eur. J. Inorg. Chem. 2018(6), 722–730 (2018)

    Article  CAS  Google Scholar 

  66. S.N.M. Sharif, N. Hashim, I.M. Isa, S.B. Bakar, M.I. Saidin, M.S. Ahmad, M. Mamat, M.Z. Hussein, Controlled release formulation of zinc hydroxide nitrate intercalated with sodium dodecylsulphate and bispyribac anions: a novel herbicide nanocomposite for paddy cultivation. Arab. J. Chem. 13, 4513–4527 (2020)

    Article  CAS  Google Scholar 

  67. H. Wu, H. Gao, Q. Yang, H. Zhang, D. Wang, W. Zhang, X. Yang, Removal of typical organic contaminants with a recyclable calcined chitosan-supported layered double hydroxide adsorbent: kinetics and equilibrium isotherms. J. Chem. Eng. Data 63, 159–168 (2018)

    Article  CAS  Google Scholar 

  68. F.Z. Mahjoubi, A. Khalidi, A. Elhalil, B. Barka, Characteristics and mechanisms of methyl orange sorption onto Zn/Al layered double hydroxide intercalated by dodecyl sulfate anion. Sci. Afr. 6, e00216 (2019)

    Google Scholar 

  69. S. Boubakri, M.A. Djebbi, Z. Bouaziz, P. Namour, N. Jaffrezic-Renault, A.B.H. Amara, M. Trabelsi-Ayadi, I. Ghorbel-Abid, R. Kalfat, Removal of two anionic reactive textile dyes by adsorption into MgAl-layered double hydroxide in aqueous solutions. Environ. Sci. Pollut. Res. 25, 23817–23832 (2018)

    Article  CAS  Google Scholar 

  70. Y. Seida, Y. Nakano, Removal of humic substances by layered double hydroxide containing iron. Water Res. 34(5), 1487–1494 (2000)

    Article  CAS  Google Scholar 

  71. Z. Jia, S. Hao, X. Lu, Exfoliated Mg–Al–Fe layered double hydroxides/polyether sulfone mixed matrix membranes for adsorption of phosphate and fluoride from aqueous solutions. J. Environ. Sci. 70, 63–73 (2018)

    Article  Google Scholar 

  72. F. Li, J. Liu, D.G. Evans, X. Duan, Stoichiometric synthesis of pure MFe2O4 (M = Mg Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 16, 1597–1602 (2004)

    Article  CAS  Google Scholar 

  73. F. Li, L.H. Zhang, D.G. Evans, C. Forano, X. Duan, Structure and thermal evolution of Mg-Al layered double hydroxide containing interlayer organic glyphosate anions. Thermochim. Acta. 424(1–2), 15–23 (2004)

    Article  CAS  Google Scholar 

  74. W.H. Wu, Q.P. Feng, M. Wang, G.W. Huang, Spherical Al-substituted ɑ-nickel hydroxide with high tapping density applied in Ni-MH battery. J. Power Sources 329, 170–178 (2016)

    Article  CAS  Google Scholar 

  75. M. Laipan, J. Yu, R. Zhu, J. Zhu, A.T. Smith, H. He, D. O’Hare, L. Sun, Functionalized layered double hydroxides for innovative applications. Mater. Horiz. 7, 715–745 (2020)

    Article  CAS  Google Scholar 

  76. Y. Ma, C. Shi, L. Lei, S. Sha, B. Zhou, Y. Liu, Y. Xiao, Research progress on polycarboxylate based superplasticizers with tolerance to clays—a review. Constr. Build Mater. 255, 119386 (2020)

    Article  CAS  Google Scholar 

  77. M. Lakraimi, A. Legrouri, A. Barroug, A. De Roy, J.P. Besse, Preparation of a new stable hybrid material by chloride-2,4-dichlorophenoxyacetate ion exchange into the zinc–aluminium–chloride layered double hydroxide. J. Mater. Chem. 10, 1007–1011 (2000)

    Article  CAS  Google Scholar 

  78. V. Prevot, C. Forano, J.P. Besse, Hybrid derivatives of layered double hydroxides. Appl. Clay Sci. 18, 3–15 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lakraimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourid, E.H., Lakraimi, M. & Legrouri, A. Removal and Release of the 2,4,5-Trichlorophenoxyacetic Acid Herbicide from Wastewater by Layered Double Hydroxides. J Inorg Organomet Polym 31, 2116–2128 (2021). https://doi.org/10.1007/s10904-020-01845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01845-7

Keywords

Navigation