Skip to main content

Interactions between Small Organic Chemicals and Soil Colloidal Constituents

  • Chapter
Interactions at the Soil Colloid — Soil Solution Interface

Part of the book series: NATO ASI Series ((NSSE,volume 190))

Abstract

Applications of small organic chemicals to soils and growing crops is part of a major industry. Some such chemicals are applied for the control of weeds, insects, and plant diseases, and for regulating plant growth. These may be applied directly to the soil as sprays, or incorporated in the soil as solids or vapors, or they may enter the soil as canopy drip from spray applications to crops. In the ideal system the soil applied chemical would be held close to the target species and available to it, and it would degrade or be biodegraded when the function for which it was intended is achieved. However, few chemicals follow the ideal behavior in soils. Some biocidal compounds do not adhere to the soil constituents and are transported readily as water moves through the soil profile. Others are strongly bound by soil colloids and may be unavailable to the plant or pest target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.M., Clement, D.E. and Graham, S.H. 1983. Reactions of alcohols with alkenes over an aluminum-exchanged montmorillonite. Clays and Clay Minerals 31, 129–136.

    Article  CAS  Google Scholar 

  • Appelqvist, I.A. 1990. Adsorption of Metals by Humic Substances Using an Automated Continuous Flow System. PhD Thesis. The University of Birmingham. For submission.

    Google Scholar 

  • Armstrong, D.E. and Chesters, G. 1968. Adsorption catalyzed chemical hydrolysis of atrazine. Environ. Sci. Technol. 2, 683–689.

    Article  CAS  Google Scholar 

  • Armstrong, D.E. and Konrad, J.G. 1974. Non-biological degradation of pesticides. In W.G. Guenzi (ed.), Pesticides in Soil and Water. Soil Sci. Soc. Amer., Madison, Wisconsin. pp. 123–130.

    Google Scholar 

  • Ash, S.G., Brown, R. and Everett, D.H. 1973. A high-precision apparatus for the determination of adsorption at the interface between a solid and a solution. J. Chem Thermodynamics 5, 239–246.

    Article  CAS  Google Scholar 

  • Asti11, D.M., Hall, P.L. and McConnell, J.D.C. 1987. An automated vacuum microbalance for measurement of adsorption isotherms. J. Phys. Eng. Sci. Instrum. 20, 19–21.

    Article  CAS  Google Scholar 

  • Bailey, G.W., White, J.L. and Rothberg, T. 1968. Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate. Soil Sci. Soc. Amer. Proc. 32, 222–234.

    Article  CAS  Google Scholar 

  • Bailey, G.W. and White, J.L. 1970. Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Rev. 32, 29–92.

    CAS  Google Scholar 

  • Banwart, W.L., Khan, A. and Hassett, J.J. 1980. Effect of sample pretreatment on sorption of acetophenone by soils and sediments. J. Environ. Sci. Health 15, 165–179.

    Article  CAS  Google Scholar 

  • Bartha, R. 1971. Fate of herbicide-derived chloroanilines in soil. J. Agric. Food Chem. 19, 385–387.

    Article  CAS  Google Scholar 

  • Benham, M. and Ross, D.K. 1989. Experimental determination of pressure composition isotherms for metal hydrogen systems using a computer controlled microbalance. Z. Physik. Chem. N.S. 163, 25–32.

    Google Scholar 

  • Bowman, B.T. and Sans, W.W. 1977. Adsorption of parathion, fenitrothion, methyl-parathion, amino-parathion and paraoxon by Na+, Ca2+ and Fe3+ montmorillonte suspensions. Soil Sci. Soc. Amer. J. 41, 514–519.

    Article  CAS  Google Scholar 

  • Briggs, G.G. 1973. A simple relationship between soil adsorption of organic chemicals and their octanol/water partition coefficient. Proc. 7th Br. Insectic. Fungic. Conf. (Brighton) 3, 83–86.

    Google Scholar 

  • Briggs, G.G. 1981. Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J. Agric. Food Chem. 19, 1050–1059.

    Article  Google Scholar 

  • Briggs, G.G. 1984. Factors affecting the uptake of soil-applied chemicals by plants and other organisms. Monogr. British Crop Protection Council 27, 33–47.

    CAS  Google Scholar 

  • Brown, C.B. and White, J.L. 1969. Reactions of 12 s-triazines with soil clays. Soil. Sci. Soc. Amer. Proc. 33, 863–867.

    Article  CAS  Google Scholar 

  • Brunauer, G., Emmett, P.H. and Teller, E. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319.

    Article  CAS  Google Scholar 

  • Burchill, S., Hayes, M.H.B. and Greenland, D.J. 1981. Adsorption. In D.J. Greenland and M.H.B. Hayes (eds.), The Chemistry of Soil Processes. Wiley, Chichester. pp. 221–400.

    Google Scholar 

  • Burdon, J., Hayes, M.H.B. and Pick, M.E. 1977. The electron density distribution in pyridinium and bipyridinium compounds and its relevance to their adsorption by expanding lattice clays. J. Environ. Sci. Health B12, 37–51.

    Article  Google Scholar 

  • Burns, I.G., Hayes, M.H.B. and Stacey, M. 1973a. Studies of the adsorption of paraquat on soluble humic fraction by gel filtration and ultrafiltration techniques. Pestic Sci. 4, 629–641.

    Article  CAS  Google Scholar 

  • Burns, I.G., Hayes, M.H.B. and Stacey, M. 1973b. Some physico-chemical interactions of paraquat with soil organic materials and model compounds. II. Adsorption and desorption equilibria in aqueous suspensions. Weed Res. 13, 79–90.

    Article  CAS  Google Scholar 

  • Burns, I.G. and Hayes, M.H.B. 1974. Some physico-chemical principles involved in the adsorption of the organic cation paraquat by soil humic materials. Residue Rev. 52, 117–146.

    Article  CAS  Google Scholar 

  • Burns, R.G. 1975. Factors effecting pesticide loss from soil. In E.A. Paul and A.B. McLaren (eds.), Soil Biochemistry 4. Marcel Dekker, New York. pp. 103–141.

    Google Scholar 

  • Cameron, R.S., Thornton, B.K., Swift, R.S. and Posner, A.M. 1972. Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts. J. Soil Sci. 23, 394–408.

    Article  CAS  Google Scholar 

  • Cartmell, E. and Fowles, G.W.A. 1971. Valency and Molecular Structure. 3rd Edition. Butter-worths, London.

    Google Scholar 

  • Cheshire, M.V. and Hayes, M.H.B. 1990. Composition, origins, structures and reactivities of soil polysaccharides. In M.F.L. De Boodt, M.H.B. Hayes, A. Herbillon, E.B.A. De Strooper and J.J. Tuck (eds.), Soil Colloids and Their Associations in Aggregates. Plenum, New York and London. pp. 307–336.

    Chapter  Google Scholar 

  • Chiou, C.T. and Kile, D.E. 1991. Interactions of nonionic organic compounds with dissolved humic substances. In P. MacCarthy, M.H.B Hayes, R.L. Malcolm and R.S. Swift (eds.), Humic Substances III. Interactions with Metals, Minerals, and Organic Chemicals. Wiley, Chichester. In press.

    Google Scholar 

  • Chiou, C.T., Peters, L.J. and Freed, V.H. 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206, 831–832.

    Article  CAS  Google Scholar 

  • Chiou, C.W., Porter, P.E. and Schmeding, D.W. 1983. Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 17, 227–231.

    Article  CAS  Google Scholar 

  • Crosby, D.G. 1970. The non-biological degradation of pesticides in soils. In Pesticides in the Soil: Ecologly, Degradation and Movement. Proc. Int. Sympos. on Pesticides in Soil. Michigan State University, East Lansing.

    Google Scholar 

  • Denbigh, K. 1971. The Principles of Chemical Equilibrium,3rd edition. Cambridge University Press.

    Google Scholar 

  • Deny, J.E. and Hamor, T.A. 1969. Stereochemistry of the diquat ion in the crystalline dibromide salt. Nature (London) 221, 464–465.

    Google Scholar 

  • Diamond, S. and Kinter, E.B. 1963. Characterization of montmorillonite saturated with short chain amine cations. I. Interpretation of basal spacing measurements. Clays and Clay Minerals 10, 163–173.

    Article  CAS  Google Scholar 

  • Dölling, A.M. 1985. Studies of Interactions of some Imidazolinone Herbicides with Clays. MSc Thesis. The University of Birmingham.

    Google Scholar 

  • El-Amamy, M.M. and Mill, T. 1984. Hydrolysis kinetics of organic chemicals on montmorillonite and kaolinite surfaces as related to moisture content. Clays and Clay Minerals 32, 67–73.

    Article  CAS  Google Scholar 

  • Everett, D.H. 1972. IUPAC Division of Physical Chemistry. Manual of samples and terminology of physicochemical quantities and units. Appendix II. Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chem. 31, 577–627.

    Article  Google Scholar 

  • Fusi, P., Ristori, G.G., Cecconi, S. and Franci, M. 1983. Adsorption and degradation of fenarimol on montmorillonite. Clays and Clay Minerals 31, 312–314.

    Article  CAS  Google Scholar 

  • Fripiat, J.J., Jelli, A.N., Poncelet, G. and André, J. 1965. Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas. J. Phys. Chem. 69, 2185–2197.

    Article  CAS  Google Scholar 

  • Fripiat, J.J., Pennequin, M., Poncelet, G. and Cloos, P. 1969. Influence of the Van der Waal force on the infrared spectra of short aliphatic alkylammonium cations held on montmorillonite. Clay Minerals 8, 119–134.

    Article  CAS  Google Scholar 

  • Gamble, D.S. 1970. Titration curves of fulvic acid. The analytical chemistry of a weak acid polyelectrolyte. Can. J. Chem. 48, 2662–2669.

    Article  CAS  Google Scholar 

  • Gerstl, Z. and Mingelgrin, U. 1979. A note on the adsorption of organic molecules on clays. Clays and Clay Minerals 27, 285–290.

    Article  CAS  Google Scholar 

  • Gilmour, J.T. and Coleman, N.T. 1971a. s-Triazine adsorption studies: Ca-H-humic acid. Soil Sci. Soc. Amer. Proc. 35, 256–259.

    Google Scholar 

  • Gilmour, J.T. and Coleman, N.T. 1971b. Buffer curves and acid strength of humic acid and two resins. Soil Sci. Soc. Amer. Proc. 35, 710–714.

    Article  CAS  Google Scholar 

  • Goring, C.A.I. 1967. Physical aspects of soil in relation to the action of soil fungicides. Ann. Rev. Phytopathol. 5, 285–318.

    Article  CAS  Google Scholar 

  • Greenland, D.J. and Mott, C.J.B. 1978. Surfaces of soil particles. In D.J. Greenland and M.H.B. Hayes (eds.), The Chemistry of Soil Constituents. Wiley, Chichester. pp. 321–353.

    Google Scholar 

  • Grice, R.E. and Hayes, M.H.B. 1970. Methods for studying the adsorption of organic chemicals by soil organic matter preparations. Proc. 10th British Weed Control Conf. (Brighton) 3, 1089–1100.

    Google Scholar 

  • Grice, R.E., Hayes, M.H.B. and Lundie, P.R. 1973. Adsorption of organophosphorus compounds by soil constituents and by soil. Proc. 7th British Insecticide and Fungicide Conf. (Brighton) 1, 73–81.

    Google Scholar 

  • Hall, P.L. and Astill, D.M. 1987. Adsorption of water by homoionic exchange forms of Wyoming montmorillonite (SWy-1). Clays and Clay Minerals 37, 355–363.

    Article  Google Scholar 

  • Hamaker, J.W. 1975. The interpretation of soil leaching experiments. In V.H. Freed (ed.), Evironmental Dynamics of Pesticides. Plenum, New York and London. pp. 115–139.

    Chapter  Google Scholar 

  • Hartley, G.S. 1961. Physico-chemical aspects of the availability of herbicides in soils. In K.K. Woodford and G.R. Sagar (eds.), Herbicides in the Soil. Blackwells, Oxford and New York.

    Google Scholar 

  • Hartley, G.S. 1964. Herbicide behavior in the soil. I. Physical factors and action through the soil. In L.J. Audus (ed.), The Physiology and Biochemistry of Herbicides. Academic Press, New York.

    Google Scholar 

  • Häusler, M.J. 1986. Studies of Interactions of some Imidazolinone Herbicides with whole Soils, Oxyhydroxides, and with Natural and Synthetic Humic Acids. Ph.D. Thesis. The University of Birmingham.

    Google Scholar 

  • Hayes, M.H.B. 1970. Adsorption of triazine herbicides on soil organic matter, including a short review on soil organic matter chemistry. Residue Rev. 32, 131–174.

    CAS  Google Scholar 

  • Hayes, M.H.B. 1984. Chemical nature and reactivities of soil organic polymers. In B. Yaron, G. Dagan and J. Goldshmid (eds.), Pollutants in Porous Media. Springer Verlag, Heidelberg. pp. 126–142.

    Chapter  Google Scholar 

  • Hayes, M.H.B. 1985. Extraction of humic substances from soils In G. Aiken, D. McKnight, R.L. Wershaw and P. MacCarthy (eds.), Humic Substances in Soil, Sediment, and Water. Wiley, New York. pp. 329–362.

    Google Scholar 

  • Hayes, M.H.B. 1987. Sorption and chemical transformation proceses of small organic chemicals in soil. Trans XIII Congress Internat. Soc. Soil Sci. (Hamburg, 1986) 6, 584–595.

    Google Scholar 

  • Hayes, M.H.B. and Himes, F.L. 1986. Nature and properties of humus-mineral complexes. In P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publications No. 17. Soil Sci. Soc. Amer. Inc., Madison, Wisconsin. pp. 103–158.

    Google Scholar 

  • Hayes, M.H.B., Isaacson, P.J., Lees, A.M. and Yormah, T.B.R. 1984. Vapor phase sorption and desorption of monomethylhydrazine by homoionic-exchanged clays. J. Colloid Interface Sci. 97, 48–54.

    Article  CAS  Google Scholar 

  • Hayes, M.H.B., MacCarthy, P., Malcolm, R.L. and Swift, R.S. 1989. Structures of humic substances: The emergence of `forms’. In M.H.B. Hayes, P. MacCarthy, R.L. Malcolm and R.S. Swift (eds.), Humic Substances II. In Search of Structure. Wiley, Chichester, pp. 689–733.

    Google Scholar 

  • Hayes, M.H.B., Lundie, P.R. and Stacey, M. 1972. Interactions between organophosphorus compounds and soil materials. I. Adsorption of ethyl methylphosphorofluoridate by clay and organic matter preparations and by soils. Pestic. Sci. 3, 619–629.

    Article  CAS  Google Scholar 

  • Hayes, M.H.B., Pick, M.E. and Toms, BA. 1975. Interactions between clay minerals and bipyridinium herbicides. Residue Rev. 57, 1–25.

    Article  CAS  Google Scholar 

  • Hayes, M.H.B., Pick, M.E. and Toms, B.A. 1978a. The influence of organocation structure on the adsorption of mono-and of bipyridinium cations by expanding lattice clay minerals. I. Adsorption by Na+-montmorillonite. J. Colloid Interface Sci. 65, 254–265.

    Article  CAS  Google Scholar 

  • Hayes, M.H.B., Pick, M.E. and Toms, B.A. 1978b. The influence of organocation structure on the adsorption of mono-and of bipyridinium cations by expanding lattice clay minerals. II. Adsorption by Nat-vermiculite. J. Colloid Interface Sci. 65, 266–275.

    Article  CAS  Google Scholar 

  • Hayes, M.H.B., Stacey, M. and Thompson, J.M. 1968. Adsorption of s-triazine herbicides by soil organic matter preparations. I.A.E.A., Isotopes and Radiation in Soil Organic Matter Studies (Vienna), pp. 75–90.

    Google Scholar 

  • Hayes, M.H.B. and Swift, R.S. 1978. The chemistry of soil organic colloids. In D.J. Greenland and M.H.B. Hayes (eds.), The Chemistry of Soil Constituents. Wiley, Chichester. pp. 179–320.

    Google Scholar 

  • Hayes, M.H.B. and Swift, R.S. 1990. Genesis, isolation, composition and structures of soil humic substances. In M.F.L. De Boodt, M.H.B. Hayes, A. Herbillon, E.B.A. De Strooper and J.J. Tuck (eds.), Soil Colloids and Their Associations in Aggregates. Plenum, New York and London. pp. 245–305.

    Chapter  Google Scholar 

  • Helfferich, F. 1962. Ion Exchange. McGraw-Hill, New York.

    Google Scholar 

  • Hummel, J.P. and Dreyer, W.J. 1962. Measurement of protein binding phenomena by gel filtration. Biochern. Biophys. Acta 63, 530–531.

    Article  CAS  Google Scholar 

  • Hurle, K. and Walker A. 1980. Persistence and its prediction. In R.J. Hance (ed.), Interactions Between Herbicides and the Soil. Academic Press, London, pp. 83–122.

    Google Scholar 

  • Isaacson, P.J. and Frink C.R. 1984. Nonreversible sorption of phenolic compounds by sediment ractions: The role of sediment organic matter. Environ. Sci. Technol. 18, 43–48.

    Article  CAS  Google Scholar 

  • Isaacson, P.J. and Hayes, M.H.B. 1984. The interaction of hydrazine hydrate with humic acid preparations at pH 4. J. Soil Sci. 35, 72–92.

    Google Scholar 

  • Jordan, L.S. 1970. Foreword. In F.A. Gunther (ed.), The Triazine Herbicides. Residue Reviews 32, vii-xiii.

    Google Scholar 

  • Karickhoff, S.W. 1981. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10, 833–846.

    Article  CAS  Google Scholar 

  • Karickhoff, S.W. and Morris, K.R. 1985. Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environ. Toxicol. Chem. 4, 469–479.

    Article  CAS  Google Scholar 

  • Khan, S.U. 1974. Humic substances reactions involving bipyridinium herbicides in soil and aquatic environments. Residue Rev. 52, 1–26.

    Article  CAS  Google Scholar 

  • Khan, S.U. 1978. The interaction of organic matter with pesticides. In M. Schnitzer and S.U. Khan (eds.), Soil Organic Matter. Elsevier, Amsterdam. pp. 137–173.

    Chapter  Google Scholar 

  • Khan, S.U. 1982. Bound pesticide residues in soil and plants. Residue Rev. 84, 1–25.

    Article  CAS  Google Scholar 

  • Kim, Y.T. 1970. The adsorption of substituted urea compounds on montmorillonite. Diss. Abst. 30, 5326-B.

    Google Scholar 

  • Kinter, E.B. and Diamond, S. 1983. Characterization of montmorillonite saturated with short chain amine cations: II. Interlayer surface coverage by the amine cations. Clays Clay Minerals 10, 163–173.

    Google Scholar 

  • Konrad, J.G., Armstrong, D.E. and Chesters, G. 1967. Soil degradation of diazinon, a phosphorothioate insecticide. Agron. J. 59, 591–594.

    Article  CAS  Google Scholar 

  • Konrad, J.G. and Chesters, G. 1969. Degradation in soils of ciodrin, an organophosphate insecticide. J. Agr. Food Chem. 17, 226–230.

    Article  CAS  Google Scholar 

  • Laby, R.H. and Walker, G.F. 1972. Hydrogen bonding in primary alkylammonium-vermiculite complexes. J. Phys. Chem. 74, 2369–2370.

    Article  Google Scholar 

  • Lagaly, G. 1984. Clay-organic interactions. In L. Fowden, R.M. Barrer and P.B. Tinker (eds.), Clay Minerals: Their Structure, Behavior and Use. The Royal Society, London. pp. 95–332.

    Google Scholar 

  • Lahav, N., White, D. and Chang, S. 1978. Peptide formation in the prebiotic era: Thermal condensation of glycine in fluctuating clay environments. Science 201, 67–69.

    Article  CAS  Google Scholar 

  • Lambert, S.M. 1967. Functional relationship between sorption in soil and chemical structures. J. Agric. Food Chem. 15, 572–576.

    Article  CAS  Google Scholar 

  • Langmuir, I. 1918. The adsorption of gases on plane surfaces on glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Lapen, A.J. and Seitz, W.R. 1982. Fluorescence polarization studies of the conformation of soil fulvic acid. Anal. Chem. Acta 134, 31–38.

    Article  CAS  Google Scholar 

  • Law, I.A., Tuck, J.J., Graham, C.L. and Hayes, M.H.B. 1990. An automated method for obtaining sorption and desorption isotherms by a combined continuous-flow injection analysis process. Anal. Chimica Acta. Accepted for publication.

    Google Scholar 

  • Law, I.A. 1988. The Extraction, Fractionation and Characterization of Humic Substances, and Their Sorption Behavior Towards Metal Cations. Ph.D. Thesis, University of Birmingham.

    Google Scholar 

  • Leenheer, JA. and Ahlrichs, J.L. 1971. A kinetic and equilibrium study of the adsorption of carbaryl and parathion upon soil organic matter surfaces. Soil. Sci. Amer. Proc. 35, 700–705.

    Article  CAS  Google Scholar 

  • Lindsay, W.L. 1979. Chemical Equilibria in Soils. Wiley, New York. Lopez-Gonzales, J. De D. and Valenzuela-Calahorro, C. 1970. Associated decomposition of

    Google Scholar 

  • DDT to DDE in the diffusion of DDT on homionic clays. J. Agric. Food Chem. 18 520–523.

    Google Scholar 

  • Lundie, P.R. 1971. Adsorption of Organophosphorus Compounds by Soils and by Soil Colloids. Ph.D. Thesis, The University of Birmingham.

    Google Scholar 

  • Macalady, D.L. and Wolfe, N.L. 1985. Effects of sediment sorption on abiotic hydrolyses. I. Organophosphorothioate esters. J. Agric. Food Chem. 33, 167–173.

    Article  CAS  Google Scholar 

  • MacEwan, D.M.C. 1948. Complexes of clays with organic compounds. I. Complex formation between montmorillonite and halloysite and certain organic liquids. Trans Faraday Soc. 44, 349–367.

    Article  CAS  Google Scholar 

  • Mackintosh, E.E., Lewis, D.G. and Greenland, D.J. 1971. Dodecylammonium mica complexes. I. Factors affecting the exchange reaction. Clays and Clay Minerals 19, 209–219.

    Article  CAS  Google Scholar 

  • Maes, A. Marynen, P. and Cremers. A. 1977. Stability of metal uncharged ligand complexes in ion exchangers. Part 1. Quantitative characterization and thermodynamic basis. J. Chem. Soc Faraday Trans. 173, 1297–1301.

    Google Scholar 

  • Maes, A. Peigneur, P. and Cremers. A. 1978. Stability of metal uncharged ligand complexes in ion exchangers. Part 2. The copper + ethylenediamine complex in montmorillonite and sulphonic acid resins. J. Chem. Soc Faraday Trans 174, 182–189.

    Google Scholar 

  • McAuliffe, C. and Coleman, N.T. 1955. Hydrogen-ion catalysis by acid clays and exchange resins. Soil Sci. Soc. Amer. Proc. 19, 156–160.

    Article  CAS  Google Scholar 

  • McBain, J.W. and Bakr, A.M. 1926. A new sorption balance. J. Am. Chem. Soc. 48, 690–695.

    Article  CAS  Google Scholar 

  • McBride, M.B. 1985. Surface reactions of 3,3’,5,5’-tetramethyl benzidine on hectorite. Clays and Clay Minerals 33, 510–516.

    Article  CAS  Google Scholar 

  • Mills, A.C. and Biggar, J.W. 1969. Adsorption of 1,2,3,4,5,6–hexachiorocyciohexane from solution: The differential heat of adsorption applied to adsorption from dilute solutions on organic and inorganic interfaces. J. Colloid Interface Sci. 29, 720–731.

    Article  CAS  Google Scholar 

  • Mingelgrin, U. and Gerstl, Z. 1983. Re-evaluation of partitioning as a mechanism for non-ionic chemicals adsorption in soils. J. Environ. Qual. 12, 1–11.

    Article  CAS  Google Scholar 

  • Mingelgrin, U. and Prost, R. 1989. Surface interactions of toxic organic chemicals with minerals. In Z. Gerstl, Y. Chen, U. Mingelgrin and B. Yaron (eds.), Toxic Organic Chemicals in Porous Media. Springer-Verlag, Berlin. pp. 91–135.

    Chapter  Google Scholar 

  • Mingelgrin, U. and Saltzman, S. 1979. Surface reactions of parathion on clays. Clays and Clay Minerals 27, 72–78.

    Article  CAS  Google Scholar 

  • Mingelgrin, U., Saltzman, S. and Yaron, B. 1977. A possible model for the surface-induced hydrolysis of organophosphorous pesticides on kaolinite clays. Soil Sci. Soc. Amer. J. 41, 519–523.

    Article  CAS  Google Scholar 

  • Mingelgrin, U., Yariv, S. and Saltzman, S. 1978. Differential infrared spectroscopy in the study of parathion-bentonite complexes. Soil Sci. Soc. Amer. J. 42, 664–665.

    Article  CAS  Google Scholar 

  • Mingelgrin, U. and Yaron, B. 1974. The effect of calcium salts on the degradation of parathion in sand and soil. Soil. Sci. Soc. Amer. Proc. 38, 914–917.

    Article  CAS  Google Scholar 

  • Moreale, A. and Van Bladel, R. 1979. Soil interactions of herbicide-derived analine residues: A thermodynamic approach. Soil Sci. 127, 1–9.

    Article  CAS  Google Scholar 

  • Mortland, M.M. 1966. Urea complexes with montmorillonite: An infrared absorption study. Clay Minerals 6, 143–156.

    Article  CAS  Google Scholar 

  • Mortland, M.M. 1970. Clay-organc complexes and interactions. Adv. Agron. 22, 75–117.

    Article  CAS  Google Scholar 

  • Mortland, M.M. and Raman, K.V. 1967. Catalytic hydrolysis of some organic phosphate peciticides by copper(II). J. Agric. Food Chem. 15, 163–167.

    Article  CAS  Google Scholar 

  • Nash, R.G., Harris, W.G. and Lewis, C.C. 1973. Soil pH and metallic amendment effects of DDT conversions to DDE. J. Environ. Qual. 2, 390–394.

    Article  CAS  Google Scholar 

  • Newman, A.C.D. and Hayes, M.H.B. 1990. Some properties of clays and of other soil colloids and their influences on soils. In M.F.L. De Boodt, M.H.B. Hayes, A. Herbillon, E.BA. De Strooper and J.J. Tuck (eds.), Soil Colloids and Their Associations in Aggregates. Plenum, New York and London. pp. 39–55.

    Chapter  Google Scholar 

  • Nichol, L.W. and Winsor, D.J. 1972. Migration of Interacting Systems. Clarendon Press, Oxford.

    Google Scholar 

  • Ostazeski, S.A. and Means, J.C. 1984. The sorption of pyrene on estuarine sediments. J. Am. Chenu. Soc. 24, 60–61.

    Google Scholar 

  • Raupach, M., Emerson, W.W. and Slade, P.G. 1979. The arrangement of paraquat bound by vermiculite and montmorillonite. J. Colloid Interface Sci. 69, 398–408.

    Article  CAS  Google Scholar 

  • Rausell-Colom, J.A. and Serratosa, J.M. 1987. Reactions of clays with organic substances. In A.C.D. Newman (ed.), Chemistry of Clays and Clay Minerals. Longman Scientific, Harlow, Essex, and the Mineralogical Society, London. pp. 371–422.

    Google Scholar 

  • Ristori, G.G., Fusi, P. and Franci, M. 1981. Montmorillonite-asulam interactions. II. Catalytic decomposition of asulam adsorbed on Mg, Ba, Ca, Li, Na, K and Cs-clay. Clay Minerals 16, 125–137.

    Article  CAS  Google Scholar 

  • Romelt, P.M. and Seitz, W.R. 1982. Fluorescence polarization studies of perylene-fulvic acid binding. Environ. Sci. Technol. 16, 613–616.

    Article  Google Scholar 

  • Rosen, M.J. 1978. Surfactants and Interfacial Phenomena. Wiley, New York and Chichester.

    Google Scholar 

  • Rosenfield, C. and Van Valkenburg, W. 1965. Decomposition of (O,O-dimethyl-O-2,4,5-trichlorophenyl) phosphorothioate (ronnel) adsorbed on bentonite and other clays. J. Agric. Food Chem. 13, 68–72.

    Article  CAS  Google Scholar 

  • Ross, S. and Olivier, J.P. 1964. On Physical Adsorption. Interscience, New York.

    Google Scholar 

  • Rupert, J.P., Granquist, W.T. and Pinnavaia, T.J. 1987. Catalytic properties of clay minerals. In A.C.D. Newman (ed.), Chemistry of Clays and Clay Minerals. Longman Scientific, Harlow, Essex, and the Mineralogical Society, London. pp. 275–318.

    Google Scholar 

  • Russell, J.D. Cruz, M. and White, J.L. 1968a. Mode of chemical degradation of s-triazines by montmorillonite. Science 160 1340–1342.

    Google Scholar 

  • Russell, J.D., Cruz, M. and White, J.L. 1968b. The adsorption of 3–aminotriazole by montmorillonite. J. Agric. Food Chem. 16, 21–24.

    Article  CAS  Google Scholar 

  • Saltzman, S., Kliger, L. and Yaron, B. 1972. Adsorption-desorption of parathion as affected by soil organic matter. J. Agric. Food Chem. 20, 1224–1226.

    Article  CAS  Google Scholar 

  • Saltzman, S., Mingelgrin, U. and Yaron, B. 1976. Role of water in the hydrolysis of parathion and methylparathion on kaolinite. J. Agric. Food Chem. 24, 739–743.

    Article  CAS  Google Scholar 

  • Saltzman, S., Yaron, B. and Mingelgrin, U. 1974. The surface catalyzed hydrolysis of parathion on kaolinite. Soil Sci. Soc. Amer. Proc. 38, 231–234.

    Article  CAS  Google Scholar 

  • Sanchez Camazano, M. and Sanchez Martin, M.J. 1983b. Montmorillonite catalyzed hydrolysis of phosmet. Soil Sci. 136, 89–93.

    Article  Google Scholar 

  • Schnitzer, M. and Khan, S.U. 1972. Humic Substances in the Environment. Marcel Dekker, New York.

    Google Scholar 

  • Schwarzenbach, R.P. and Westall, J. 1981. Transport of nonpolar organic compounds from surface water to ground water. Laboratory sorption studies. Environ. Sci. Technol. 15, 1360–1367.

    Article  CAS  Google Scholar 

  • Schwertmann, U., Kodama, H. and Fischer, W.R. 1986. Mutual inteactions between organics and iron oxides. In P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Soil Sci. Soc. of Amer. Inc., Madison, Wisconsin. pp. 223–250.

    Google Scholar 

  • Senesi, N. and Steelink, C. 1989. Application of ESR spectroscopy to the study of humic substances. In M.H.B. Hayes, P. MacCarthy, R.L. Malcolm and R.S. Swift (eds.), Humic Substances IL In Search of Structure. Wiley, Chichester, pp. 373–408.

    Google Scholar 

  • Senesi, N. and Testini, C. 1982. Physico-chemical investigations of interaction mechanisms between s-triazine herbicides and soil humic acids. Geodenna 28, 129–146.

    CAS  Google Scholar 

  • Senesi, N. and Testini, C. 1983. Spectroscopic investigation of electron donor-acceptor processes involving organic free radicals in the adsorption of substituted area herbicides by humic acids. Pestic. Sci. 14, 79–89.

    Article  CAS  Google Scholar 

  • Skipper, H.D., Volk, V.V., Mortland, M.M. and Raman, K.V. 1978. Hydrolysis of atrazine on soil colloids. Weed Sci. 26, 46–51.

    CAS  Google Scholar 

  • Skujins, J.J. 1967. Enzymes in soil. In A.D. McLaren and G.H. Peterson (eds.), Soil Biochemistry. Edward Arnold, London, and Marcel Dekker, New York. pp. 371–414.

    Google Scholar 

  • Slade, P.G., Raujpach, M. and Emerson, W.W. 1978. The ordering of cetylpyridinium bromide on vermiculite. Clays and Clay Minerals 16, 125–134.

    Article  Google Scholar 

  • Solomon, D.H. and Rosser, M.J. 1965. Reactions catalyzed by minerals. I. Polymerization of styrene. J. Appl. Polymer Sci. 9, 1261–1271.

    Article  CAS  Google Scholar 

  • Sposito, G. 1984. The Surface Chemistry of Soils. Oxford University Press.

    Google Scholar 

  • Stevenson, F.J. 1972. Role and function of humus in soil with emphasis on adsorption of herbicides and chelation of micronutrients. Bio Science 22, 643–650.

    CAS  Google Scholar 

  • Stevenson, F.J. 1982. Humus Chemistry. Wiley, New York.

    Google Scholar 

  • Stevenson, F.J. 1985. Geochemistry of soil humic substances. In G.R. Aiken, D.M. McKnight, R.L. Wershaw, and P. MacCarthy (eds.), Humic Substances in Soil, Sediment and Water. Wiley, New York.

    Google Scholar 

  • Sullivan, J.D. Jr and Felbeck, G.T. 1968. The interaction of s-triazine herbicides with humic acids from three different soils. Soil Sci. 106, 45–52.

    Article  Google Scholar 

  • Theng, B.K.G. 1974. The Chemistry of Clay-Organic Reactions. Adam Hilger, London.

    Google Scholar 

  • Theng, B.K.G. 1979. Formation and Properties of Clay-Polymer Complexes. Elsevier. Amsterdam and New York.

    Google Scholar 

  • Theng, B.K.G. 1982. Clay-activated organic reactions. Proc. Intern. Clay Conf. (1981). Developments in Sedimentology 35, 197–238.

    CAS  Google Scholar 

  • Theng, B.K.G., Greenland, D.J. and Quirk, J.P. 1967. Adsorption of alkylammonium cations by montmorillonite. Clay Minerals 7, 1–7.

    Article  CAS  Google Scholar 

  • Tsvetkov, F., Mingelgrin, U. and Lahav, N. 1990. Cross-linked hydroxy-Al-montmorillonite as a stationary phase in liquid chromatography. Clays and Clay Minerals 38, 380–390.

    Article  CAS  Google Scholar 

  • Van de Vault, D. 1943. The theory of chromatography. J. Chenu. Soc. 65, 532–540.

    Article  Google Scholar 

  • Vansant, E.F. and Uytterhoeven, J.B. 1972. Thermodynamics of the exchange of n-alkylam-monium ions on Na-montmorillonite. Clays and Clay Minerals 20, 47–54.

    Article  CAS  Google Scholar 

  • Waite, T.D. 1991. Redox chemistry of metal-humic interactions. In P. MacCarthy, M.H.B. Hayes, R.L. Malcolm, and R.S. Swift (eds.), Humic Substances III. Interactions with Metals, Minerals, and Organic Chemicals. Wiley, Chichester. In Press.

    Google Scholar 

  • Walker, G.F. 1959. Diffusion of exchangeable cations in vermiculite. Nature 184, 1392–1394.

    Article  CAS  Google Scholar 

  • Weber, J.B. 1970. Mechanisms of adsorption of s-triazines by clay colloids and factors affecting plant availability. Residue Reviews 32, 93–130.

    CAS  Google Scholar 

  • Weber, J.B., Weed, S.B. and Ward, T.M. 1969. Adsorption of s-triazines by soil organic matter. Weed Sci. 17, 417–421.

    CAS  Google Scholar 

  • Weiss, A. 1969. Organic derivatives of clay minerals. In G. Eglinton and M.T.J. Murphy (eds.), Organic Geochemistry. Springer-Verlag, Berlin, New York. pp. 737–781.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hayes, M.H.B., Mingelgrin, U. (1991). Interactions between Small Organic Chemicals and Soil Colloidal Constituents. In: Bolt, G.H., De Boodt, M.F., Hayes, M.H.B., McBride, M.B., De Strooper, E.B.A. (eds) Interactions at the Soil Colloid — Soil Solution Interface. NATO ASI Series, vol 190. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1909-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1909-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4081-7

  • Online ISBN: 978-94-017-1909-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics