Skip to main content
Log in

Effect of Extraction Processes on Bioactive Compounds from Pleurotus ostreatus and Pleurotus djamor: Their Applications in the Synthesis of Silver Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The objective of this study was to obtain bioactive compounds from extracts of Pleurotus ostreatus and Pleurotus djamor to be used as reducing agents in the synthesis of silver nanoparticles (AgNPs). The mushrooms were dried using two methodologies: solar dehydration and cabinet oven dryer. Two procedures were applied to extract bioactive compounds from the fresh and dehydrated Pleurotus spp. In the first, maceration was applied at 25 °C using water and ethanol at different concentrations with stirring for 48 h. In the second, extractions were carried out by boiling for 2 h using Soxhlet equipment. Total phenolic compounds, flavonoids and anthocyanins, and ascorbic acid were determined. Antioxidant capacities were quantified by ABTS and DPPH methods. For both species, the extract obtained by maceration with 100% water, and dried in the solar dehydrator exhibited the highest antioxidant activities. The extracts were used in the synthetic reactions of AgNPs, using a suspension of 3 mM silver nitrate. The AgNPs were oven-dried at 100 ºC and calcined to obtain a powder that was characterized by X-ray diffractometry and scanning electron microscopy, obtaining AgNPs with an average particle size of 28.44 nm for P. ostreatus and 55.76 nm for P. djamor.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Qayyum, V.A. Castillo, K. Warrington, M.A. Barakat, J.N. Kuhn, Catal. Commun. 28, 128–133 (2012). https://doi.org/10.1016/j.catcom.2012.08.026

    Article  CAS  Google Scholar 

  2. N. Hasirci, in Nanomaterials and Nanosystems for Biomedical Applications. ed. by M.R. Mozafari (Springer, Berlin, 2007), p. 2

    Google Scholar 

  3. A.K. Mandal, Glob. J. Nanomed. 3, 555607 (2017)

    Google Scholar 

  4. M. Wojnicki, M. Luty-Błocho, M. Kotańska, M. Wytrwal, T. Tokarski, A. Krupa, M. Kolaczkowski, A. Bucki, M. Kobielusz, Naunyn-Schmiedeberg’s Arch. Pharmacol. 391, 123–130 (2018). https://doi.org/10.1007/s00210-017-1440-x

    Article  CAS  Google Scholar 

  5. F. Shao, J. Mater. Environ. Sci. 5, 587–590 (2014)

    CAS  Google Scholar 

  6. V. Sharma, S. Kaushik, P. Pandit, D. Dhull, Y.J. Jaya Parkash, S. Kaushik, Appl. Microbiol. Biotechnol. 103, 881–891 (2019). https://doi.org/10.1007/s00253-018-9488-1

    Article  CAS  PubMed  Google Scholar 

  7. U.T. Khatoon, G.V.S. Nageswara Rao, K.M. Mohan, A. Ramanaviciene, A. Ramanavicius, Vacuum 6, 5837–5844 (2017). https://doi.org/10.1016/j.vacuum.2017.10.003

    Article  CAS  Google Scholar 

  8. P. Kuppusamy, S. Ilavenil, S. Srigopalram, D.H. Kim, N. Govindan, G.P. Maniam, M.M. Yusoff, K.C. Choi, J. Inorg. Organomet. Polym. Mater. 27, 562–568 (2017). https://doi.org/10.1007/s10904-017-0498-8

    Article  CAS  Google Scholar 

  9. M.B. Estevez, S.G. Mitchell, R. Faccio, S. Alborés, Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab6636

    Article  Google Scholar 

  10. B. Kumar, K. Smita, L. Cumbal, A. Debut, Saudi J. Biol. Sci. 24, 45–50 (2017). https://doi.org/10.1016/j.sjbs.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  11. S. Mirunalini, V. Arulmozhi, K. Deepalakshmi, M. Krishnaveni, J. Nat. Sci. Biol. 4, 55–61 (2012). https://doi.org/10.15835/nsb448051

    Article  CAS  Google Scholar 

  12. A. Lateef, A.O. Adeeyo, J. Nat. Sci. Biol. 7, 405–411 (2015). https://doi.org/10.15835/nsb.7.4.9643

    Article  CAS  Google Scholar 

  13. S. Ahmed, M. Saifullah Ahmad, B.L. Swami, S. Ikram, J. Radiat. Res. Appl. Sci. 9, 1–7 (2016). https://doi.org/10.1016/j.jrras.2015.06.006

    Article  CAS  Google Scholar 

  14. A.K. Mishra, K.N. Tiwari, R. Saini, P. Kumar, S.K. Mishra, V.B. Yadav, G. Nath, J. Inorg. Organomet. Polym. Mater. 30, 2266–2278 (2020). https://doi.org/10.1007/s10904-019-01392-w

    Article  CAS  Google Scholar 

  15. R.S. Yehia, H. Al-Sheikh, Microbiol. Biotechnol. 30, 2797–2803 (2014). https://doi.org/10.1007/s11274-014-1703-3

    Article  CAS  Google Scholar 

  16. R. Al-Bahrani, J. Raman, H. Lakshmanan, A.A. Hassan, V. Sabaratnam, Mater. Lett. 186, 21–25 (2017). https://doi.org/10.1016/j.matlet.2016.09.069

    Article  CAS  Google Scholar 

  17. M.N. Owaid, I.J. Ibraheem, Eur. J. Nanomed. 9, 5–23 (2017). https://doi.org/10.1515/ejnm-2016-0016

    Article  CAS  Google Scholar 

  18. S.F. Musa, T.S. Yeat, L.Z.M. Kamal, Y.M. Tabana, M.A. Ahmed, A. El Ouweini, V. Lin, L.C. Keong, D. Sandai, J. Sci. Food Agric. 98, 1197–1207 (2017). https://doi.org/10.1002/jsfa.8573

    Article  CAS  PubMed  Google Scholar 

  19. J. Raman, G.R. Reddy, H. Lakshmanan, V. Selvaraj, B. Gajendran, R. Nanjian, A. Chinnasamy, V. Sabaratnam, Process Biochem. 50, 140–147 (2015). https://doi.org/10.1016/j.procbio.2014.11.003

    Article  CAS  Google Scholar 

  20. M. Mizuno, Y. Nishitani, J. Clin. Biochem. Nutr. 52, 202–207 (2013). https://doi.org/10.3164/jcbn.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A.C. Suárez, I.J. Nieto, Rev. Iberoam. Micol. 30, 1–8 (2013). https://doi.org/10.1016/j.riam.2012.03.011

    Article  Google Scholar 

  22. W.M. Brenne, Food Prot. 53, 883–894 (1990). https://doi.org/10.4315/0362-028X-53.10.883

    Article  Google Scholar 

  23. D. Martínez-Carrera, P. Morales, M. Sobal, M. Bonilla, W. Martínez, in El cultivo de setas Pleurotus spp. en México (2007) p. 20

  24. E.S. Delgado, H.E. Martínez-Flores, M.G. Garnica-Romo, J.I. Aranda Sánchez, C.R. Sosa-Aguirre, C.J. Cortés-Penagos, J.L. Fernández-Muñoz, J. Food Process. Preserv. 37, 489–495 (2012). https://doi.org/10.1111/j.1745-4549.2011.00668.x

    Article  Google Scholar 

  25. I.M.C. Brighente, M. Dias, L.G. Verdi, M.G. Pizzolatti, Pharm. Biol. 45, 156–161 (2007). https://doi.org/10.1080/13880200601113131

    Article  CAS  Google Scholar 

  26. M. Liu, X.Q. Li, C. Weber, C.Y. Lee, J. Brown, R.H. Liu, J. Agric. Food Chem. 50, 2926–2930 (2002). https://doi.org/10.1021/jf0111209

    Article  CAS  PubMed  Google Scholar 

  27. M.M. Giusti, R.E. Wrolstad, Current Protocols in Food Analytical Chemistry (F1.21-F1.2.13) (Wiley, New York, 2001).

    Google Scholar 

  28. G.-C. Yen, H.-T. Lin, Food Sci. Technol. 31, 205–213 (1996). https://doi.org/10.1111/j.1365-2621.1996.331-32.x

    Article  CAS  Google Scholar 

  29. R. Randhir, K. Shetty, Innov. Food Sci. Emerg. Technol. 8, 197–204 (2007). https://doi.org/10.1016/j.ifset.2006.10.003

    Article  CAS  Google Scholar 

  30. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  31. I. González-Palma, H.B. Escalona-Buendía, E. Ponce-Alquicira, M. Téllez-Téllez, V.K. Gupta, G. Díaz-Godínez, J. Soriano-Santos, Front. Microbiol. 7, 1–9 (2016). https://doi.org/10.3389/fmicb.2016.01099

    Article  Google Scholar 

  32. H.S. Yim, F.Y. Chye, S.K. Ho, C.W. Ho, Asian J. Food. Agroind. 2, 392–401 (2009)

    Google Scholar 

  33. H.H. Arbaayah, Y.U. Kalsom, Mycosphere 4, 661–673 (2013). https://doi.org/10.5943/mycosphere/4/4/2

    Article  Google Scholar 

  34. T. Jayakumar, P.A. Thomas, P. Geraldine, Innov. Food Sci. Emerg. Technol. 10, 228–234 (2009). https://doi.org/10.1016/j.ifset.2008.07.002

    Article  CAS  Google Scholar 

  35. R. Devika, S. Elumalai, E. Manikandan, D. Eswaramoorthy, Open Access Sci. Rep. 1, 1–5 (2012). https://doi.org/10.4172/scientificreports.557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma. Guadalupe Garnica-Romo.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Flores, H.E., Contreras-Chávez, R. & Garnica-Romo, M.G. Effect of Extraction Processes on Bioactive Compounds from Pleurotus ostreatus and Pleurotus djamor: Their Applications in the Synthesis of Silver Nanoparticles. J Inorg Organomet Polym 31, 1406–1418 (2021). https://doi.org/10.1007/s10904-020-01820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01820-2

Keywords

Navigation