Skip to main content
Log in

Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biosynthesis of nanoparticles has received increasing interest because of the growing need to develop safe, cost-effective and environmentally friendly technologies for the synthesis of nano-materials. In this study, silver nanoparticles (AgNPs) were synthesized using a reduction of aqueous Ag+ ions with culture supernatant from Pleurotus ostreatus. The bioreduction of AgNPs was monitored by ultra violet-visible spectroscopy and the obtained AgNPs were characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy techniques. TEM studies showed the size of the AgNPs to be in the range of 4–15 nm. The formation of AgNPs might be an enzyme-mediated extracellular reaction process. Furthermore, the antifungal effect of AgNPs against Candida albicans as compared with commercially antifungal drugs was examined. The effect of AgNPs on dimorphic transition of C. albicans was tested. The anticancer properties of AgNPs against cells (MCF-7) were also evaluated. AgNPs caused a significant decrease in cell viability of an MCF-7 cell line (breast carcinoma). Exposure of MCF-7 cells with AgNPs resulted in a dose-dependent increase in cell growth inhibition varying from 5 to 78 % at concentrations in the range of 10–640 μg ml−1. The present study demonstrated that AgNPs have potent antifungal, antidimorphic, and anticancer activities. The current research opens a new avenue for the green synthesis of nano-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou El-Nour MM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and application of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Ajith TA, Janardhanan KK (2007) Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J Clin Biochem Nutr 40:157–162

    Article  Google Scholar 

  • Amichai B, Grunwald MH (1998) Adverse drug reactions of the new oral antifungal agents-terbinafine, fluconazole and itraconazole. Int J Dermatol 37:410–415

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh BD, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains Cladosporium cladosporoides fungus. Colloids Surf B Biointerfaces 68:88–92

    Article  CAS  Google Scholar 

  • Bansal V, Ramanathan R, Bhargava SK (2011) Fungus-mediated biological approaches towards ‘‘green’’ synthesis of oxide nanomaterials. Aust J Chem 64:279–293

    Article  CAS  Google Scholar 

  • Bernardshaw S, Johnson E, Hetland G (2005) An extract of the mushroom Agaricus blazei Murill administered orally protects against systemic Streptococcus pneumoniae infection in mice. Scand J Immun 62:393–398

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164

    Article  CAS  Google Scholar 

  • Bhaskara Rao KV, Hemath Naveen KS, Kumar G, Karthik L (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2(6):161–167

  • Bhat R, Sharanabasavaa VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A (2013) Photobiosynthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B: Biol 125:63–69

    Article  CAS  Google Scholar 

  • Bhimba BV, Agnel Defora Franco DA, Mathew JM, Jose GM, Joel EL, Thangarajb M (2012) Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin J Nat Med 10(1):77–80

    Article  Google Scholar 

  • Binupriya AR, Sathishkumar M, Yun S (2010) Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. wiridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res 49:852–858

    Article  CAS  Google Scholar 

  • Chang R (1996) Functional properties of edible mushrooms. Nutr Rev 54:S91–S93

    Article  CAS  Google Scholar 

  • CLSI (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard-Second Edition. CLSI document M27-A2, Pennsylvania, USA [ISBN 1-56238-469-4]

  • Devi JS, Bhimba V, Ratnam K (2012) Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca in vitro. Sci Rep 1:242–248

    Google Scholar 

  • Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol 51(7):543–547

  • Duran N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–12

    Article  Google Scholar 

  • Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM et al (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. J Antimicrob Chemother 54:1019–1024

    Article  CAS  Google Scholar 

  • Hamouda T, Myc A, Donovan B, Shih A, Reuter JD, Baker JR (2000) A novel surfactant nano emulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156:1–7

    Article  Google Scholar 

  • Harley S (1993) Use of a simple colorimetric assay to determine conditions for induction of nitrate reductase in plants. Am Biol Teach 55:161–164

    Article  Google Scholar 

  • Hartsel S, Bolard J (1996) Amphotericin B: new life for an old drug. Trends Pharmacol Sci 17:445–449

    Article  CAS  Google Scholar 

  • Huang JL, Li QB, Sun DH, Lu YH, Su YB, Yang X, Wang HX, Wang YP, Shao WY, He N, Hong JQ, Chen CX (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:1–11

    CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B Biointerfaces 81:430–433

    Article  CAS  Google Scholar 

  • Juneyoung L, Keuk-Jun K, Woo SS, Jong GK, Dong GL (2010) The silver nanoparticle (Nano-Ag): a new model for antifungal agents, silver nanoparticles, David Pozo Perez (Ed.), ISBN: 978-953-307-028-5

  • Jung HJ, Seu YB, Lee DG (2007) Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. J Microbiol Biotechnol 17(8):1324–1329

    CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153

    Article  CAS  Google Scholar 

  • Keuk-Jun K, Woo SS, Bo Kyoung S, Seok-Ki M, Jong-Soo C, Jong GK, Dong GL (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8):1482–1484

    CAS  Google Scholar 

  • Klittich C, Leslie JF (1988) Nitrate reduction mutants of Fusarium moniliforme (gibberella fujikuroi). Genetics 118(3):417–423

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  Google Scholar 

  • Lioyd JR (2003) Microbial metal reduction. FEMS Microbiol Rev 27:411–425

  • Mandal S, Phadtre S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phys 5:118–127

    Article  Google Scholar 

  • McLain N, Ascanio R, Baker C, Strohaver RA, Dolan JW (2000) Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob Agents Chemother 44(10):2873–2875

    Article  CAS  Google Scholar 

  • Mizuno T (2000) Development of an antitumor biological response modifier from Phellinus linteus (Berk.Et.Curt) Teng (Aphillophoromycetideae) (review). Int J Med Mushroom 2:21–33

    CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001a) Extracellular biosynthesis of biometallic Au–Ag alloy nanoparticles. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001b) Extracellular biosynthesis of biometallic Au–Ag alloy nanoparticles. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Nalwa HS (2000) Hand book of Nanostructured Materials and Nanotechnology: Electrical properties. Academic Press, Waltham

    Google Scholar 

  • Noorbakhsh F (2011) Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. IPCBEE 5:364–367

    Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  CAS  Google Scholar 

  • Ottow JCG, Von Klopotek A (1969) Enzymatic reduction of iron oxide by fungi. Appl Microbiol 18:41–43

  • Panacek A, Kolár M, Vecerová R, Prucek R, Soukupová J, Krystof V, Hamal P, Zboril R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340

    Article  CAS  Google Scholar 

  • Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Bios 4(1):45–50

    Google Scholar 

  • Sanghi R, Verma P (2009a) Bio-synthesis of silver nanoparticles using white rot fungus. In: Singh J (ed) Information technology and environmental management. MD Publications Pvt. Ltd., New Delhi

  • Sanghi R, Verma P (2009b) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504

  • Sleytr UB, Messner P, Pum D, Sára M (1999) Crystalline bacterial cell surface layers (S-layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed Engl 38:1034–1054

    Article  CAS  Google Scholar 

  • Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S (2012) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Proc Biochem 47:273–279

    Article  CAS  Google Scholar 

  • Sung WS, Lee IS, Lee DG (2007) Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J Microbiol Biotechnol 17(11):1797–1804

    CAS  Google Scholar 

  • Turkoglu A, Duru ME, Mercan N (2007) Antioxidant and antimicrobial activity of Russula delica Fr: an edible wild mushroom. Eur J Anal Chem 2(1):54–67

    Google Scholar 

  • Vahabi K, Mansoori G, Karimi V (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insciences J 1(1):65–79

    Article  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond) 5:33–40

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1:31–62

    Article  CAS  Google Scholar 

  • Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675

    Article  CAS  Google Scholar 

  • Zhao Y, Jiang Y, Fang Y (2006) Spectroscopy property of Ag nanoparticles. Acta A 65:1003–1006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramy S. Yehia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yehia, R.S., Al-Sheikh, H. Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30, 2797–2803 (2014). https://doi.org/10.1007/s11274-014-1703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1703-3

Keywords

Navigation