Skip to main content
Log in

Copper(II) and Nickel(II) Complexes of Tridentate Hydrazide and Schiff Base Ligands Containing Phenyl and Naphthalyl Groups: Synthesis, Structural, Molecular Docking and Density Functional Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present study, we report the synthesis, characterization, molecular docking and theoretical studies of two new copper(II) [Cu2(L1)2(py)2]·H2O (1) and nickel(II) [Ni(L2)2] (2) coordination complexes, which are made through the coordination of (E)-N′-(5-bromo-2-hydroxybenzylidene) benzohydrazide (H2L1) and 1-((E)-(2-methoxyphenylimino) methyl) naphthalene-2-ol (HL2), respectively. The H2L1 and HL2 acts as deprotonated tridentate hydrazide and Schiff base ligands containing phenyl and naphthalyl groups, respectively. The molecular structure of (1) and (2) have been confirmed by single crystal X-ray diffraction studies and belongs to the monoclinic and triclinic system of the space group C2/c and P-1, respectively. The X-ray structural determination showed that the structure around Cu(II) was phenoxo-bridged distorted square pyramidal geometry for (1), while complex (2) display octahedral geometry around Ni(II). Binding affinity of (1) and (2) with the DNA generated from molecular docking was − 8.2 and − 9.2 kcal/mol, respectively, while H-pylori urease with binding affinity of − 9.3 and − 12.8 kcal/mol, respectively as predicted with Auto Dock Vina using DFT. The absorption and vibrational analysis of (1) and (2) have been carried out by the long-range corrected density functional theory (LC-DFT). The natural bonding orbital (NBO) analysis has been used to get insight into non-covalent interactions. From LC-DFT calculations, various parameters such as natural population analysis, atomic charges, and HOMO–LUMO energies have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Kochem, G. Gellon, O. Jarjayes, C. Philouze, A. du-Moulinet d’Hardemare, M. Van-Gastel, F. Thomas, Dalton Trans. 44, 12743–12756 (2015)

    CAS  PubMed  Google Scholar 

  2. E. Loukopoulos, B. Berkoff, K. Griffiths, V. Keeble, V. Dokorou, A. Tsipis, A. Escuer, G.E. Kostakis, Crys. Eng. Commun. 17, 6753–6764 (2015)

    CAS  Google Scholar 

  3. P. Singh, D.P. Singh, K. Tiwari, M. Mishra, A.K. Singh, V.P. Singh, RSC Adv. 5, 45217–45230 (2015)

    CAS  Google Scholar 

  4. B.S. Kusmariya, S. Tiwari, A. Tiwari, A.P. Mishra, G.A. Naikoo, U.J. Pandit, J. Mol. Struct 1116, 279–291 (2016)

    CAS  Google Scholar 

  5. E.M. Zayed, M.A. Zayed, Spectrochim Acta A 141, 81 (2015)

    Google Scholar 

  6. E.M. Zayed, A.M.M. Hindy, G.G. Mohammed, Appl. Organometal. Chem. (2018). https://doi.org/10.1002/aoc.4525

    Article  Google Scholar 

  7. G.D. Muhamed, E.M. Zayed, M.M. Hindy, Spectrochim Acta A 145, 76–84 (2015)

    Google Scholar 

  8. Z. Li, H. Yang, G. Chang, M. Hong, J. Dou, M. Niu, J. Photochem. Photobiol. B 163, 403–412 (2016)

    CAS  PubMed  Google Scholar 

  9. M.P. Kumar, S. Tejaswi, A. Rambabu, Y.K.A. Kalalbandi Shivaraj, Polyhedron 102, 111–120 (2015)

    Google Scholar 

  10. M. Das, R. Nasani, M. Saha, S.M. Mobin, S. Mukhopadhyay, Dalton Trans. 44, 2299–2310 (2015)

    CAS  PubMed  Google Scholar 

  11. N. Nandunjan, R. Narayanasamy, S. Geib, K. Velmurugan, R. Nandhakumar, M.D. Balakumaran, P.T. Kalaichelvan, Polyhedron 110, 203–220 (2016)

    Google Scholar 

  12. P. Roozbahani, M. Salehi, R.E. Lalekshah, M. Kubicki, Inorg. Chim. Acta 496, 119022 (2019)

    CAS  Google Scholar 

  13. Y. Liu, H. Chao, Y. Yuan, H. Yu, L. Ji, Inorg. Chim. Acta. 359, 3807–3814 (2006)

    CAS  Google Scholar 

  14. S. Betanzos-Lara, C. Gomez-Ruiz, L.R. Barron-Sosa, I. Gracia-Mora, M. Flores-Alamo, N. Barba-Behrens, J. Inorg. Biochem. 114, 82–93 (2012)

    CAS  PubMed  Google Scholar 

  15. V. Oliveri, G. Vecchio, Eur. J. Med Chem. 120, 252–274 (2016)

    CAS  PubMed  Google Scholar 

  16. X. Totta, A.A. Papadopoulou, A.G. Hatzidimitriou, A. Papadopoulos, G. Psomas, J. Inorg. Biochem. 145, 79–93 (2015)

    CAS  PubMed  Google Scholar 

  17. L.V. Modolo, A.X. de Souza, L.P. Horta, D.P. Araujo, A. de Fatima, J. Adv. Res. 6(1), 35–44 (2015)

    CAS  PubMed  Google Scholar 

  18. C. Follmer, J. Clin. Pathol. 63(5), 424–430 (2010)

    CAS  PubMed  Google Scholar 

  19. M.J. Marony, S. Ciurli, Chem. Rev. 114(8), 4206–4228 (2014)

    Google Scholar 

  20. J.L. Boer, S.B. Mulrooney, R.P. Hausinger, Arch. Biochem. Biophys. 544, 142–152 (2014)

    CAS  PubMed  Google Scholar 

  21. Z. Amtul, R.A. Siddiqui, M.I. Choudhary, Curr. Med. Chem. 9(14), 1323–1348 (2002)

    CAS  PubMed  Google Scholar 

  22. Z. Ul-Haq, M.A. Lodhi, S.A. Nawaz, S. Iqbal, K.M. Khan, B.M. Rode, A. Rahman, Bioorg. Med. Chem. 16, 3456–3461 (2008)

    Google Scholar 

  23. H.Q. Li, C. Xu, H.S. Li, L. Shi, Z.P. Xiao, H.L. Zhu, Chem. Med. Chem. 2, 1361–1369 (2007)

    CAS  PubMed  Google Scholar 

  24. T. Tanaka, M. Kawase, S. Tani, Life Sci. 73, 2985–2990 (2003)

    CAS  PubMed  Google Scholar 

  25. R. Raz, R. Colodner, C.M. Kunin, Clin. Infect. Dis. 40(6), 896–898 (2005)

    PubMed  Google Scholar 

  26. G.R. Nielubowicz, H.L.T. Mobley, Nat. Rev. Urol. 7(8), 430–441 (2010)

    CAS  PubMed  Google Scholar 

  27. A.L. Flores-Mireles, J.N. Walker, M. Caparon, S.J. Hultgren, Nat. Rev. Microbiol. 13(5), 269–284 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. N. Patel, A.K. Prajapati, R.N. Jadeja, R.N. Patel, S.K. Patel, I.P. Tripathi, N. Dwivedi, V.K. Gupta, R.J. Butcher, Polyhedron (2020). https://doi.org/10.1016/j.poly.2020.114434

    Article  Google Scholar 

  29. S. Canellas, A. Bauza, A. Lancho, A. Garcia-Raso, J.J. Fiol, E. Molins, P. Ballester, A. Frontera, Cryst. Eng. Commun. (2015). https://doi.org/10.1039/c5ce01009h

    Article  Google Scholar 

  30. S. Bharti, M. Choudhary, B. Mohan, J. Coord. Chem. 71, 284–310 (2018)

    CAS  Google Scholar 

  31. N. Noorussabah, M. Choudhary, A. Jana, N. Das, B. Mohan, K. Ahmad, S. Sangeeta, S. Bharti, M.K. Mishra, S.R. Sharma, J. Coord. Chem. 72(10), 1715–1735 (2019)

    CAS  Google Scholar 

  32. B. Mohan, A. Jana, N. Das, S. Bharti, M. Choudhary, J. Mol. Struct. 1171, 94–109 (2018)

    CAS  Google Scholar 

  33. S. Bharti, M. Choudhary, B. Mohan, S.P. Rawat, S.R. Sharma, K. Ahmad, J. Mol. Struct. 1164, 137–154 (2018)

    CAS  Google Scholar 

  34. B. Mohan, M. Choudhary, S. Bharti, A. Jana, N. Das, S. Muhammad, A.G. Al-Sehemi, S. Kumar, J. Mol. Struct. 1190, 54–67 (2019)

    CAS  Google Scholar 

  35. B. Mohan, A. Jana, N. Das, S. Bharti, M. Choudhary, S. Muhammad, S. Kumar, A.G.A. Sehemi, H. Algarni, Inorg. Chim. Acta 484, 148–159 (2019)

    CAS  Google Scholar 

  36. D. Bradley, G. Williams, M. Lawton, J. Org. Chem. 75(24), 8351 (2010)

    Google Scholar 

  37. A.B. Pangborn, M.A. Giurdello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, Organometallics 15, 1518–1520 (1996)

    CAS  Google Scholar 

  38. R.N. Patel, S.P. Rawat, M. Choudhary, V.P. Sondhiya, D.K. Patel, K.K. Shukla, D.K. Patel, Y. Singh, R. Pandey, Inorg. Chim. Acta 392, 283–291 (2012)

    CAS  Google Scholar 

  39. S. Bharti, M. Choudhary, B. Mohan, S.R. Sharma, K. Ahmad, Inorg. Nano Met. Chem. 48(2–5), 211–224 (2019)

    Google Scholar 

  40. Z.-Q. Han, S. Han, Y. Wang, Inorg. Nano Met. Chem. 47, 127–130 (2017)

    CAS  Google Scholar 

  41. G.M. Sheldrick, Acta. Crystallogr 64A, 112–122 (2008)

    Google Scholar 

  42. G.M. Sheldrick, Acta. Crystallogr 71C, 3–8 (2015)

    Google Scholar 

  43. G.M. Morris et al., AutoDock4 and AutoDockTools4. J. Comput. Chem. 30(16), 2785–2791 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. O. Trott, A.J. Olson, J. Comput. Chem 31(2), 455–461 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. W. DeLano, The PyMOL Molecular Graphics System, Version 1.2 r3pre (Schrödinger, LLC, New York, 2002). There is no corresponding record for this reference.

  46. R.A. Laskowski, M.B. Swindells, LigPlot+: Multiple Ligand-Protein Interaction Diagram for Drug Discovery (ACS Publications, Washington, DC, 2011)

    Google Scholar 

  47. A.A.T. Nakvi, T. Mohammad, G.M. Hasan, M.I. Hassan, Curr. Top. Med. Chem. 18(20), 1755–1768 (2018)

    Google Scholar 

  48. D.S. Biovia, Discovery Studio Modeling Environment (Dassault Systèmes, San Diego, 2015)

    Google Scholar 

  49. J.W. Song, T. Hirosawa, T. Tsuneda, K. Hirao, J. Chem. Phys. 126, 154105 (2007)

    PubMed  Google Scholar 

  50. J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    CAS  PubMed  Google Scholar 

  51. T.H. Dunning Jr., P.J. Hay, in Modern Theoretical Chemistry, vol. 3, ed. by H.F. Schaefer III (Plenum, New York, 1977), pp. 1–28

    Google Scholar 

  52. T.H. Dunning Jr., J. Chem. Phys. 90, 1007–1023 (1989)

    CAS  Google Scholar 

  53. F. Weinhold, J.E. Carpenter, in The Structure of Small Molecules and Ions, ed. by R. Naaman, Z. Vager (Plenum Press, New York, 1988), pp. 277–236

    Google Scholar 

  54. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16, Revision A.03 (Gaussian, Inc., Wallingford, 2016)

    Google Scholar 

  55. R. Loganathan, S. Ramakrishnan, E. Suresh, M. Palaniandavar, A. Riyasdeen, M.A. Akbarsha, Dalton Trans. 43, 6177–6194 (2014)

    CAS  PubMed  Google Scholar 

  56. N. Novoa, F. Jastaud, P. Hamon, T. Roisned, O. Cador, B.L. Guennic, D. Carrillo, J.R. Hamon, Polyhedron 86, 81–88 (2015)

    CAS  Google Scholar 

  57. W.-B. Li, Y.-H. Zhuang, D.-Z. Liao, G.L. Wang, Trans. Met. Chem. 19(3), 315–318 (1994)

    CAS  Google Scholar 

  58. Y. Singh, R.N. Patel, S.K. Patel, A.K. Patel, N. Patel, R. Singh, R.J. Butcher, J.P. Jasinski, A. Gutierrez, Polyhedron 171, 155–171 (2019)

    CAS  Google Scholar 

  59. R.N. Patel, M.K. Kesharwani, A. Singh, D.K. Patel, M. Chuodhary, Transit. Met. Chem 33, 733–738 (2008)

    CAS  Google Scholar 

  60. S.R. Ebner, B.J. Helland, R.A. Jacobson, R.J. Angelici, Inorg. Chem. 19, 175–180 (1980)

    CAS  Google Scholar 

  61. N. Zhang, Y.H. Fan, C.F. Bi, J. Zuo, P.F. Zhang, Z.Y. Zhang, Z. Zhu, J. Coord. Chem. 66, 1933–1944 (2013)

    CAS  Google Scholar 

  62. X. Li, C.F. Bi, Y.H. Fan, X. Zhang, X.M. Meng, L.S. Cui, Inorg. Chem. Commun 50, 35–41 (2014)

    Google Scholar 

  63. A.T. Chaviara, P.J. Cox, K.H. Repana, A.A. Pantazaki, K.T. Papazisis, A.H. Kortsaris, D.A. Kyriakidis, G.S. Nikolov, C.A. Bolos, J. Inorg. Biochem. 99, 467–476 (2005)

    CAS  PubMed  Google Scholar 

  64. K. Nakamoto, Infrared and Raman Spectra of Inorganic Coordination Compounds, Part B, Application in Coordination, Organometallic and Bioinorganic Chemistry (Wiley, New York, 2009)

    Google Scholar 

  65. A.A.D. Firouzabadi, H. Kargar, S. Eslaminejad, B. Notash, J. Coord. Chem. 68, 4345 (2015)

    Google Scholar 

  66. B.J. Hathaway, in Comprehensive Coordination Chemistry, vol. 5, ed. by G. Wilkinson, R.G. Gilard, J.A. McCleverty (Pergamon Press, Oxford, 1987), p. 533

    Google Scholar 

  67. R.S. Drago, D.W. Meek, M.D. Joesten, L. Laroche, Inorg. Chem. 2, 124 (1963)

    CAS  Google Scholar 

  68. K. Sayin, D. Karakas, N. Krakus, T.A. Sayin, Z. Zaim, S.E. Kariper, Polyhedron 90, 139–146 (2015)

    CAS  Google Scholar 

  69. J. Chang, S.-Z. Zhang, Y. Wu, H.-J. Zhang, Y.-X. Sun, Trans. Met. Chem (2020). https://doi.org/10.1007/s11243-020-00379-8

    Article  Google Scholar 

  70. D. Karakas, K. Sayin, Indian J. Chem. 51A, 480–485 (2013)

    Google Scholar 

  71. S.Y. Ebrahimipour, I. Sheihshoaie, A. Crochet, M. Khaleghi, K.M. Fromm, J. Mol. Struct. 1072, 267–276 (2014)

    Google Scholar 

  72. V. Balachandran, G. Santhi, V. Karpagam, A. Lakshmi, Spectrochim Acta A 110, 130–140 (2013)

    CAS  Google Scholar 

  73. S.Y. Sheihshoaie, M. Ebrahimipour, H.A. Sheihshoaie, M. Rudbari, G. Khaleghi Bruno, Spectrochim Acta A 124, 548–555 (2014)

    Google Scholar 

  74. B.Y. Murakami, Y. Matsuda, K. Sakata, Inorg. Chem. 8, 1728–1734 (1971)

    Google Scholar 

Download references

Acknowledgements

Author thanks the Sophisticated Analytical Instrument Facility (SAIF), IIT Patna for single crystal data collection of copper complex (1) and nickel complex (2). We thanks to Head, Department of Chemistry, NIT Patna for making available spectral facility. Financial assistance received from the Council of Scientific and Industrial Research, New Delhi, India (Grant No. 01(2856)/16/EMR-II) is gratefully acknowledged. B. Mohan thankful to CSIR, New Delhi, India for JRF fellowship. Raman K. Singh is thankful to the University Grants Commission (UGC)-BSR Research Start-Up Grant, No. F. 30-347/2019(BSR), and is grateful to Professor T. Taketsugu, Hokkaido University, Japan for providing the computational facilities. The author from King Khalid University are thankful to Deanship of Scientific Research at King Khalid University for funding the work through Research Project under Grant Number (GRP-69-41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Choudhary.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorussabah, N., Choudhary, M., Das, N. et al. Copper(II) and Nickel(II) Complexes of Tridentate Hydrazide and Schiff Base Ligands Containing Phenyl and Naphthalyl Groups: Synthesis, Structural, Molecular Docking and Density Functional Study. J Inorg Organomet Polym 30, 4426–4440 (2020). https://doi.org/10.1007/s10904-020-01610-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01610-w

Keywords

Navigation