Skip to main content
Log in

The fascinating polyoxometalates

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

After touching the history of polyoxometalate (POM) chemistry, the basics of isopolyoxometalates (IPOM) and heteropolyoxometalates (HPOM) are discussed. The main focus is placed on molybdenum- and tungsten-containing IPOM and HPOM. The HPOM are presented based on the coordination of the ‘hetero’atom: tetrahedral (Keggin and Wells–Dawson structures, including their lacunary and mixed anions, Preyssler-Pope-Jeannin polyanion), octahedral (Anderson-Evans structure), square-prismatic (Peacock-Weakley sandwiches) and icosahedral (Dexter-Silverton structure). Subsequently the specifics of polyoxocations (POC) are highlighted, examples of naturally occurring HPOM are given and the nomenclature of POM is discussed. In conclusion, selected applications are presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. The ionic strength I is an expression of the effect of ions in solution on the electrostatic potential. I is defined by \(I = 0.5\Sigma{cz^2}\), where c is the molar concentration of the ion and z its charge.

  2. A net ionic equation presents only the ions that are changed during the course of the reaction, while the complete ionic equation also includes the spectator ions. The net ionic equation can be easily compiled by balancing the overall charge and the molecular equation can be readily derived from it. Chemical equations provide an invaluable guideline for the successful preparation of a compound.

  3. The Patterson function is used to solve the phase problem in X-ray crystallography. It was introduced in 1934 by the pioneering British X-ray crystallographer Arthur Lindo Patterson (1902–1966).

  4. The utilized ammonium paratungstate tetrahydrate from Global Tungsten & Powders Corp. (GTP), Towanda, USA was characterized in detail in [55]. As followed from TG and ammonia analyses the crystal water content amounted to 2.9 mol. The formula (NH4)10[H2W12O42]·2.9H2O (APT·2.9H2O) was used throughout this study. The structure of APT·4H2O ‘tolerates’ the deficit of 1.1 mol H2O without any structural changes.

  5. The Swiss chemist Jean Charles Galissard de Marignac published his articles under ‘M.C. Marignac’. It should be noted that ‘M’ stands for ‘Monsieur’ and is not the initial of one of his given names.

  6. The Schoenflies symbol, named after the German mathematician Arthur Moritz Schoenflies (1853–1928), is a system of symbols used to specify the 32 crystallographic point groups. Because a point group is completely adequate to describe the symmetry of a molecule, this notation is often sufficient and commonly used in the field of molecular spectroscopy.

  7. Water glass, also called liquid glass, is the common name for an aqueous solution of either sodium or potassium silicate, because it is essentially silicon dioxide, SiO2, in water.

  8. Trivacant Keggin anions are characterized by two types. Type A: Three adjacent metal atoms belonging to three different {W3O13} groups have been taken away. Type B: A complete {M3O13} group has been removed from the intact Keggin anion.

  9. The name icosahedron comes from Greek εἴκοσι (eíkosi), meaning 'twenty', and ἕδρα(hédra), meaning 'seat'. The icosahedron with 20 equilateral triangles is one of the so-called Platonic solids, which are constructed by congruent convex regular polygons with the same number of faces meeting at each vertex. Five solids meet these criteria: tetrahedron (4), cube (6), octahedron (8), dodecahedron (12), and icosahedron (20).

  10. A chemical garden is an experiment usually performed by adding metal salts such as CuSO4 or CoCl2 to an aqueous solution of water glass (cf. footnote 7). It results in the growth of colored plant-like forms in minutes to hours. The chemical garden was first observed and described by German/Dutch alchemist and chemist Johann Rudolf Glauber (1604–1670) in 1646.

  11. Mohs scale of mineral hardness. https://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness (Accessed May 29, 2021).

  12. In naming a complex wherein a single atom bridges two metals, the bridging ligand is preceded by the Greek character μ, with a subscript or superscript number denoting the number of metals bound to the bridging ligand.

Abbreviations

aka:

Also known as

AMT:

Ammonium metatungstate

APT:

Ammonium paratungstate

CID:

Collision-induced dissociation

DSC:

Differential scanning calorimetry

DTG:

Differential thermal gravimetry

EPR:

Electron paramagnetic resonance, aka ESR (electron spin resonance)

ESI–MS:

Electrospray ionization mass spectrometry

FT-IR:

Fourier-transform infrared spectroscopy

GTP:

Global Tungsten and Powders Corp.

HPOM:

Heteropolyoxometalate(s)

HPOMo:

Heteropolyoxomolybdate(s)

HPOT:

Heteropolyoxotungstate(s)

IPOM:

Isopolyoxometalate(s)

IPOMo:

Isopolyoxomolybdate(s)

IPOT:

Isopolyoxotungstate(s)

μM:

Micromolar (1 μM = 10–6 M)

MAS-NMR:

Magic angle spinning nuclear magnetic resonance

MS:

Mass spectrometry/mass spectrometer

NMR:

Nuclear magnetic resonance

pm:

1 picometer = 0.01 Å = 10–10 cm = 10–12 m

PMB:

Phosphomolybdenum blue

POC:

Polyoxocation(s)

POM:

Polyoxometalate(s)

SEM:

Scanning electron microscopy

SMM:

Single-molecule magnet

TBO:

Tungsten blue oxide

TG:

Thermal gravimetry

UV/Vis:

Ultraviolet/visible spectroscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

Z :

Atomic number (Periodic Table); Number of formula units in a unit cell

References

  1. Pope MT, Sadakane M, Kortz U (2019) Celebrating polyoxometalate chemistry. Eur J Inorg Chem 2019:340–342

    Article  CAS  Google Scholar 

  2. Cruywagen JJ (1999) Advances in inorganic chemistry protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate(VI). Adv Inorg Chem 49:127–182

    Article  Google Scholar 

  3. Fuchs J, Mahjour S, Palm R (1976) Tetraalkylammonium polyvanadate (Tetraalkylammonium-polyvanadate). Z Naturforsch 31b:544–548 (in German)

    Article  CAS  Google Scholar 

  4. Fuchs J, Knöpnadel I, Brüdgam I (1974) Tetramethylammonium (1:8) molybdate (Tetramethylammonium (l:8)-molybdat). Z Naturforsch 29b:473–475 (in German)

    Article  Google Scholar 

  5. Fuchs J, Hartl H, Schiller W, Gerlach U (1976) Crystal structure of tributylammonium decatungstate [NH(C4H9)3]2[W10O32] (Die Kristallstruktur des Tributylammoniumdekawolframats [NH(C4H9)3]2[W10O32]). Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 32:740–749 (in German)

    Article  Google Scholar 

  6. Grase R, Fuchs J (1977) Tetraphenylphosphonium-isopolytungstates (Tetraphenylphosphonium-Isopolywolframate). Z Naturforsch 32:1379–1389 (in German)

    Article  Google Scholar 

  7. Fuchs J, Freiwald W, Hartl H (1978) Redetermination of the crystal structure of tetrabutylammonium hexatungstate (Neubestimmung der Kristallstruktur von Tetrabutylammoniumhexawolframat). Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 34:1764–1770 (in German)

    Article  Google Scholar 

  8. Jahr KF, Fuchs J, Oberhauser R (1968) Hydrolysis of amphoteric alkoxides. IX. Saponification of tungsten (VI) acid tetramethylester in the presence of tetraalkylammonium bases (Zur Hydrolyse amphoterer Metallalkoxide, IX. Die Verseifung des Wolfram(VI)‐säure‐tetramethylesters in Gegenwart von Tetraalkylammoniumbasen). Chem Ber 3:477–481 (in German)

    Article  Google Scholar 

  9. Gatehouse BM, Leverett P (1969) Crystal structure of potassium molybdate, K2MoO4. J Chem Soc (A) 1969:849–854

    Article  Google Scholar 

  10. Dittmann M, Schweda E (1998) Synthesis and crystal structure of two types of ammonium monomolybdate (NH4)2MoO4 (Synthese und Kristallstruktur zweier Formen von Ammoniummonomolybdat (NH4)2MoO4). Z Anorg Allg Chem 624:2033–2037 (in German)

    Article  CAS  Google Scholar 

  11. Schweda E, Dittmann M, Hofmann M, Glaser M (2002) Phase transformation of ammonium monomolybdate. The structure of the low temperature modification, (NH4)2[MoO4] (mP60, P21/a). Z Krist 217:164–167

    CAS  Google Scholar 

  12. Knöpnadel I, Hartl H, Hunnius WD, Fuchs J (1974) Anionic structure of so-called ammonium dimolybdate (NH4)2Mo2O7 (Anionenstruktur des sogenannten Ammoniumdimolybdats (NH4)2Mo2O7). Angew Chem 86:894–895 ((in German))

    Article  Google Scholar 

  13. Evans HT Jr, Gatehouse BM, Leverett P (1975) Crystal structure of the heptamolybdate(VI) (paramolybdate) ion, [Mo7O24]6–, in the ammonium and potassium tetrahydrate salts. J Chem Soc Dalton Trans 1975:505–514

    Article  Google Scholar 

  14. Garin JL, Costamagna JA (1988) The structure of ammonium decamolybdate (NH4)8Mo10O34. Acta Crystallogr Sect C Struct Chem 44:779–782

    Article  Google Scholar 

  15. Lasocha W, Jansen J, Schenk H (1995) Crystal structure of ammonium trimolybdate monohydrate (NH4)2Mo3O10·H2O by powder diffraction method. J Solid State Chem 116:422–426

    Article  CAS  Google Scholar 

  16. Vivier H, Bernard J, Djomaa H (1977) Crystal structure of ammonium molybdate tetrahydrate (NH4)4Mo8O26·4H2O. Rev Chim Miner 14:584–604

    CAS  Google Scholar 

  17. Benchrifa R, Leblanc M, DePape R (1989) Synthesis and crystal structure of two polymorphs of (NH4)2Mo4O13, orthorhombic (o) and triclinic (t). Eur J Solid State Inorg Chem 26:593–601

    CAS  Google Scholar 

  18. Gatehouse BM, Miskin BK (1975) The crystal structures of caesium pentamolybdate, Cs2Mo5O16, and caesium heptamolybdate, Cs2Mo7022. Acta Cryst B31:1293–1299

    Article  CAS  Google Scholar 

  19. Strukan N, Cindrić M, Devčić M, Giesterb G, Kamenar B (2000) Bis(tetramethylammonium) hexamolybdate hydrate, [(CH3)4N]2[Mo6O19]·H2O. Acta Cryst C56:e278–e279

    CAS  Google Scholar 

  20. Ma X, Yang Z, Schulzke C (2010) Crystal structure of bis(1,3diisopropyl-4,5-dimethylimidazolium)hexamolybdate, [C11H21N2]2[Mo6O19]. Z Kristallogr NCS 225:775–776. https://doi.org/10.1524/ncrs.2010.0341

    Article  CAS  Google Scholar 

  21. Bridgeman AJ, Cavigliasso G (2002) Structure and bonding in [M6O19]n− isopolyanions. Inorg Chem 41:1761–1770

    Article  CAS  PubMed  Google Scholar 

  22. Krebs B, Stiller S, Tytko KH, Mehmke J (1991) Structure and bonding in the high-molecular-weight isopolymolybdate ion, (Mo36O112(H2O)16)8− - The crystal structure of Na8(Mo36O112(H2O)16)·58H2O. Eur J Solid State Inorg Chem 28:883–903

    CAS  Google Scholar 

  23. Müller A, Krickemeyer E, Meyer J, Bögge H, Peters F, Plass W, Diemann E, Dillinger S, Nonnenbruch F, Randerath M, Menke C (1995) [Mo154(NO)14O420(OH)28(H2O)70](25±5)−: A water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000 ([Mo154(NO)14O420(OH)28(H2O)70](25±5)−: Ein wasserlösliches Riesenrad mit mehr als 700 Atomen und einer relativen Molekülmasse von ca. 24000). Angew Chem 107:2293–2295 (in German)

    Article  Google Scholar 

  24. Müller A, Botar B, Das SK, Bögge H, Schmidtmann M, Merca A (2004) On the complex hedgehog-shaped cluster species containing 368 Mo atoms: simple preparation method, new spectral details and information about the unique formation. Polyhedron 23:2381–2385

    Article  CAS  Google Scholar 

  25. Farrugia LJ (2007) Sodium tungstate dihydrate: a redetermination. Acta Cryst E 63:i142

    Article  CAS  Google Scholar 

  26. Fuchs J, Palm R, Hartl H (1996) K7HW5O19·10H2O – a novel isopolyoxotungstate(VI). Angew Chem Int Ed 35:2651–2653

    Article  CAS  Google Scholar 

  27. Lindqvist I (1950) Crystal structure studies on anhydrous sodium molybdates and tungstates. Acta Chem Scand 4:1066–1074

    Article  CAS  Google Scholar 

  28. Okada K, Morikawa H, Marumo F, Iwai S (1975) Disodium ditungstate. Acta Cryst B31:1200–1201

    Article  CAS  Google Scholar 

  29. Zhai HJ, Xin Huang X, Waters T, Wang XB, O’Hair RAJ, Wedd AG, Wang LS (2005) Photoelectron spectroscopy of doubly and singly charged group VIB dimetalate anions: M2O72–, MM’O72–, and M2O7 (M, M’ = Cr, Mo, W). J Phys Chem A 109:10512–10520

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, You JL, Sobol AA, Lu LM, Wang M, Wu J, Lv XM, Wan SM (2017) In-situ high temperature Raman spectroscopic study on the structural evolution of Na2W2O7 from the crystalline to molten states. J Raman Spectrosc 48:298–304

    Article  CAS  Google Scholar 

  31. Wei Q, Shi H, Cheng X, Qin L, Ren G, Shu K (2010) Growth and scintillation properties of the Na2W2O7 crystal. J Crystal Growth 312:1883–1885

    Article  CAS  Google Scholar 

  32. Janović DJ, Validžić ILJ, Mitrić M, Nedelković JM (2013) Crystal structure studies on plate/shelf like disodium ditungstate. Bull Mater Sci 36:149–152

    Article  CAS  Google Scholar 

  33. Burtseva KG, Chernaya TS, Sirota MI (1978) Determination of crystal and molecular structure of sodium paratungstate. Dokl Akad Nauk SSSR Proc USSR Acad Sci 243:104–107 (Бурцева КГ, Черная ТС, Сирота МИ (1978) Определение кристаллической и молекулярной структуры паравольфрамата натрия. Докл Акад Наук СССР 243:104–107) (in Russian)

  34. Fuchs J, Flindt EP (1979) Preparation and structure investigation of polytungstates – a contribution to the elucidation of the paratungstate ion (Darstellung und Strukturuntersuchung von Polywolframaten – Ein Beitrag zur Aufklärung des Parawolframations). Z Naturforsch 34:412–422 (in German)

    Article  Google Scholar 

  35. Tolkacheva EO, Sergienko VS, Ilyuchin AB, Meshkov SV (1997) Study of interaction of the anions WO42− and MoO42− with 1-oxyethylidenediphosphonic acid using 31P-NMR spectroscopy and single-crystal analysis. Crystal structure of Na8[W6O17(L*)2]·26H2O and Na6W7O24·14H2O. Zh Neorg Khim 42:752–764 (Toлкaчeвa EO, Cepгиeнкo BC, Илюxин AБ, Meшкoв CB (1997) Bзaимoдeйcтвиe aниoнoв WO42− и MoO42− c 1-oкcиэтилeндифосфорной кислотой пo дaнным cпeктpocкoпии ЯMP 31P и peнтгeнocтpypтyнoгo aнaлизa Na8[W6O17(L*)2]·26H2O и Na6W7O24·14H2O. Ж Heopг Xим 42:752–76) (in Russian)

    CAS  Google Scholar 

  36. Hartl H, Palm R, Fuchs J (1993) A new type of paratungstate (Ein neuer Parawolframat-Typ). Angew Chem 105:1545–1547 (in German)

    Article  CAS  Google Scholar 

  37. D’Amour H, Allmann R (1972) Crystal structure of ammonium paratungstate tetrahydrate (NH4)10[H2W12O42]·4H2O (Die Kristallstruktur des Ammoniumparawolframat-tetrahydrats (NH4)10[H2W12O42]·4H2O). Z Kristallogr 136:23–47 (in German)

    Google Scholar 

  38. Okada K, Morikawa H, Marumo F, Iwai S (1976) The crystal structure of K2W3O10. Acta Crystallogr Sect B Struct Crystallogr Cryst 32:1522–1525

    Article  Google Scholar 

  39. Chatterjee S, Mahapatraa PK, Singh K, Choudharyb RNP (2003) Structural, electrical and dielectric properties of Na2W3O10 ceramic. Mater Lett 57:2616–2620

    Article  CAS  Google Scholar 

  40. Christian JB, Whittingham MS (2008) Structural study of ammonium metatungstate. J Solid State Chem 181:1782–1791

    Article  CAS  Google Scholar 

  41. Viswanathan K (1974) Crystal structure of sodium tetratungstate, Na2W4O13. J Chem Soc Dalton Trans 20:2170–2172

    Article  Google Scholar 

  42. Molinari A, Amadelli R, Mazzacani A, Sartori G, Maldotti A (2002) Tetralkylammonium and sodium decatungstate heterogenized on silica: Effects of the nature of cations on the photocatalytic oxidation of organic substrates. Langmuir 18:5400–5405

    Article  CAS  Google Scholar 

  43. Lindqvist I (1952) On the structure of the paratungstate ion. Acta Crystallogr 5:667–670

    Article  CAS  Google Scholar 

  44. Lipscomb WN (1965) Paratungstate ion. Inorg Chem 4:132–134

    Article  CAS  Google Scholar 

  45. Lunk KhI, Chuvaev VF, Kolli ID, Spitsyn VI (1968) Investigation of the structure of lithium, sodium and potassium paratungstate by proton magnetic resonance. Dokl Akad Nauk SSSR 181:357–360 (Лyнк XИ, Чyвaeв BФ, Кoлли ИД, Cпицын BИ (1968) Иccлeдoвaниe cтpoeния пapaвoльфpaмaтoв лития, нaтpия и кaлия мeтoдoм П.M.P. Дoкл Aкaд Hayк CCCP 181:357–360) (in Russian)

    CAS  Google Scholar 

  46. Weiss G (1969) The structure of the paratungstate anion using the example of (NH4)10[H2W12O42]·10H2O (Die Struktur des Parawolframations am Beispiel des Ammoniumparawolframates (NH4)10[H2W12O42]·10H2O). Z Anorg Allg Chem 368:279–283 (in German)

    Article  CAS  Google Scholar 

  47. Evans HT Jr, Prince E (1983) Location of internal hydrogen atoms in the paradodecatungstate polyanion by neutron diffraction. J Am Chem Soc 105:4838–4839

    Article  CAS  Google Scholar 

  48. Fait M, Heidemann D, Lunk HJ (1999) Characterization of the protons in paratungstates using 1H MAS NMR investigations (Charakterisierung der Protonen in polykristallinen Parawolframaten durch 1H-MAS-NMR-Untersuchungen). Z Anorg Allg Chem 625:530–538 (in German)

    Article  CAS  Google Scholar 

  49. Hempel K, Saradshow M (1967) Solubility and stable hydrates in the system ammonium paratungstate–water (Löslichkeit und stabile Kristallhydrate im System Ammoniumparawolframat–Wasser). Krist Tech 3:437–445 (in German)

    Article  Google Scholar 

  50. Averbuch-Pouchot MT, Tordjman I, Durif A, Guitel JC (1979) Structure of ammonium paratungstate (NH4)6H6W12O42·10H2O (Structure d’un paratungstate d’ammonium (NH4)6H6W12O42·10H2O). Acta Crystallogr Sect Struct Crystallogr Cryst Chem 35:1675–1677 (in French)

    Article  Google Scholar 

  51. Evans HT Jr, Kortz U, Jameson GB (1993) Structure of potassium paradodecatungstate 7½-hydrate. Acta Crystallogr Sect C Struct Chem 49:856–861

    Article  Google Scholar 

  52. van Put JW (1991) Ammonium paratungstate as a raw material for the manufacturing of lamp filament tungsten wire. Dissertation, Delft University

  53. van Put JW, Witkamp GJ, van Rosmalen GM (1993) Formation of ammonium paratungstate tetra- and hexa-hydrate. I: stability. Hydrometallurgy 34:187–201

    Article  Google Scholar 

  54. Fait MJG, Moukhina E, Feist M, Lunk HJ (2016) Thermal decomposition of ammonium paratungstate tetrahydrate: new insights by a combined thermal and kinetic analysis. Thermochim Acta 637:38–50

    Article  CAS  Google Scholar 

  55. Fait MJG, Lunk HJ, Feist M, Schneider M, Dann JN, Frisk TA (2008) Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions: characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim Acta 469:12–22

    Article  CAS  Google Scholar 

  56. Fait MJG, Radnik J, Lunk HJ (2016) Surface tungsten reduction during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere: a paradox? Thermochim Acta 633:77–81

    Article  CAS  Google Scholar 

  57. Berzelius JJ (1826) Contribution to a better understanding of molybdenum (Beitrag zur näheren Kenntniss des Molybdäns). Ann Phys 82:369–392 (in German)

    Article  Google Scholar 

  58. Keggin JF (1933) Structure of the molecule of 12-phosphotungstic acid. Nature 131:908–909

    Article  CAS  Google Scholar 

  59. Keggin JF (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc A 144:75–100

    CAS  Google Scholar 

  60. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer-Verlag

    Book  Google Scholar 

  61. Pettersson L, Andersson I, Öhman LO (1986) Multicomponent polyanions. 39. Speciation in the aqueous H+–MoO42––HPO42– system as deduced from a combined Emf – 31P NMR study. Inorg Chem 25:4726–4733

    Article  CAS  Google Scholar 

  62. Pope MT (1991) Molybdenum oxygen chemistry. Progr Inorg Chem 39:181–257

    Google Scholar 

  63. Pope MT, Müller A (eds) (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer Academic Publishers, New York

    Google Scholar 

  64. Baker LCW, Glick DC (1998) Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation. Chem Rev 98:3–50

    Article  CAS  PubMed  Google Scholar 

  65. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–217

    Article  CAS  PubMed  Google Scholar 

  66. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219–237

    Article  CAS  PubMed  Google Scholar 

  67. Müller A, Peters F, Pope MT, Gatteschi D (1998) Polyoxometalates: very large clusters–nanoscale magnets. Chem Rev 98:239–271

    Article  PubMed  Google Scholar 

  68. Klemperer WG, Wall CG (1998) Polyoxoanion chemistry moves toward the future: from solids and solutions to surfaces. Chem Rev 98:297–306

    Article  CAS  PubMed  Google Scholar 

  69. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–357

    Article  CAS  PubMed  Google Scholar 

  70. Rohmer MM, Bénard M, Blaudeau JP, Maestre JM, Poblet JM (1998) From Lindqvist and Keggin ions to electronically inverse hosts: ab initio modelling of the structure and reactivity of polyoxometalates. Coord Chem Rev 178–180:1019–1049

    Article  Google Scholar 

  71. Kazansky LP, Chaquin P, Fournier M, Hervé G (1998) Analysis of 183W and 17O NMR chemical shifts in polyoxometalates by extended Hückel mo calculations. Polyhedron 17:4353–4364

    Article  CAS  Google Scholar 

  72. Yamase T, Pope MT (eds) (2002) Polyoxometalate chemistry for nano-composite design. Kluwer Academic Publishers, New York

    Google Scholar 

  73. Poblet JM, López X, Bo C (2003) Ab initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates. Chem Soc Rev 32:297–308

    Article  CAS  PubMed  Google Scholar 

  74. Liu S, Volkmer D, Kurth DG (2003) Functional polyoxometalate thin films via electrostatic layer-by-layer self-assembly. J Cluster Sci 14:405–419

    Article  CAS  Google Scholar 

  75. Brian LE, Baronetti GT, Thomas HJ (2003) The state of the art on Wells-Dawson heteropoly-compounds: a review of their properties and applications. Appl Catal A 256:37–50

    Article  CAS  Google Scholar 

  76. Hill CL (2004) Polyoxometalates: reactivity. In: Wedd AG (ed) Comprehensive coordination chemistry II: from biology to nanotechnology, vol 4. Elsevier, pp 679–750

    Google Scholar 

  77. Mizuno N, Yamaguchi K, Kamata K (2005) Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord Chem Rev 249:1944–1956

    Article  CAS  Google Scholar 

  78. Yun G, Changwen H, Hong L (2005) Research progress in synthesis and catalysis of polyoxometalates. Prog Nat Sci 15:385–394

    Article  Google Scholar 

  79. Tajima Y (2005) Polyoxotungstates reduce the β-lactam resistance of methicillin-resistant staphylococcus aureus. Mini-Rev Med Chem 5:255–268

    Article  CAS  PubMed  Google Scholar 

  80. Fedotov MA, Maksimovskaya RI (2006) NMR structural aspects of the chemistry of V, Mo, W polyoxometalates. J Struct Chem 47:952–978

    Article  CAS  Google Scholar 

  81. Michailovski A, Patzke GR (2006) Hydrothermal synthesis of molybdenum oxide based materials: strategy and structural chemistry. Chem Eur J 12:9122–9134

    Article  CAS  PubMed  Google Scholar 

  82. He T, Yao J (2006) Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci 51:810–879

    Article  CAS  Google Scholar 

  83. Gouzerh P, Che M (2006) From Scheele and Berzelius to Müller-Polyoxometalates (POMs) revisited and the ‘missing link’ between the bottom up and top down approaches. Actual Chim 298:9–22

    CAS  Google Scholar 

  84. Long DL, Tsunashima R, Cronin L (2010) Polyoxometalates as building blocks for functional nanosystems (Polyoxometallate als Bausteine für funktionelle Nanosysteme). Angew Chem 122:1780–1803 (in German)

    Article  Google Scholar 

  85. Pope MT, Kortz U (2012) Polyoxometalates, Update based on the original article by Michael T. Pope. Encycl Inorg Bioinorg Chem. John Wiley & Sons Ltd

    Google Scholar 

  86. (2012) Themed collection: polyoxometalate cluster science 2010. Chem Soc Rev 41:7325–7646

  87. Lunk HJ (2014) Polyoxometalates (Polyoxo-Ionen von Metallen). In: Steudel R, Huheey JE, Keiter EA, Keiter RL (eds) Inorganic chemistry – principles of structure and reactivity (Anorganische Chemie – Prinzipien von Struktur und Reaktivität), 5th edn. Walter de Gruyter GmbH, pp 967–984 (in German)

    Google Scholar 

  88. Monakhov KY, Moors M, Kögerler P (2017) Perspectives for polyoxometalates in single-molecule electronics and spintronics, vol 69. In: van Eldik R, Cronin L (eds) Adv Inorg Chem. Academic Press, Elsevier, Amsterdam, pp 251–286

    Google Scholar 

  89. Soriano-López J, Song F, Patzke GR, Galan-Mascaros JR (2018) Photoinduced oxygen evolution catalysis promoted by polyoxometalate salts of cationic photosensitizers. Front Chem 6:302. https://doi.org/10.3389/fchem.2018.00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sullivan KP, Yin Q, Collins-Wildman DL, Tao M, Geletii YV, Musaev DG, Lian T, Hill CL (2018) Multi-tasking POM systems. Front Chem 6:365. https://doi.org/10.3389/fchem.2018.00365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bijelic A, Rompel A (2018) Polyoxometalates: more than a phasing tool in protein crystallography. ChemTexts 4:10. https://doi.org/10.1007/s40828-018-0064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kortz U (2019) Celebrating polyoxometalates (cluster issue). Eur J Inorg Chem 9:336–541

    Google Scholar 

  93. Zhang Z, Li HL, Wang YL, Yang GY (2019) Syntheses, structures, and electrochemical properties of three new acetate functionalized zirconium-substituted germanotungstates: from dimer to tetramer. Inorg Chem 58:2372–2378

    Article  CAS  PubMed  Google Scholar 

  94. Martín S, Takashima Y, Lin CG, Song YF, Miras HN, Cronin L (2019) Integrated synthesis of gold nanoparticles coated with polyoxometalate clusters. Inorg Chem 58:4110–4116

    Article  PubMed  CAS  Google Scholar 

  95. Tian AX, Yang ML, Fu YB, Ying J, Wang XL (2019) Electrocatalytic and Hg2+ fluorescence identifiable bifunctional sensors for a series of Keggin compounds. Inorg Chem 58:4190–4200

    Article  CAS  PubMed  Google Scholar 

  96. Wang YL, Zhao JW, Zhang Z, Sun JJ, Li XY, Yang BF, Yang GY (2019) Enantiomeric polyoxometalates based on malate chirality-inducing tetra-ZrIV substituted Keggin dimeric clusters. Inorg Chem 58:4657–4664

    Article  CAS  PubMed  Google Scholar 

  97. Izarova NV, Pope MT, Kortz U (2012) Noble metals in polyoxometalates. Angew Chem Int Ed 51:9492–9510

    Article  CAS  Google Scholar 

  98. Yang P, Kortz U (2018) Discovery and evolution of polyoxopalladates. Acc Chem Res 51:1599–1608

    Article  CAS  PubMed  Google Scholar 

  99. Marignac MC (1864) Investigations of silicotungstic acids, and a note about the structure of tungstic acid (Recherches sur les acides silicotungstiques et note sur la constitution de l’acide tungstique). Ann Chim Phys 4(3):5–76 (in French)

    Google Scholar 

  100. Baker LCW, Figgis JS (1970) New fundamental type of inorganic complex: hybrid between heteropoly and conventional coordination complexes. Possibilities for geometrical isomerisms in 11-, 12-, 17-, and 18-heteropoly derivatives. J Am Chem Soc 92:3794–3797

    Article  CAS  Google Scholar 

  101. Kondinski A, Parac-Vogt TN (2018) Keggin structure, quō vādis? Front Chem 6:346. https://doi.org/10.3389/fchem.2018.00346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pope MT (1976) Structural isomers of 1:12 and 2:18 heteropoly anions. Novel and unexpected chirality. Inorg Chem 15:2008–2010

    Article  CAS  Google Scholar 

  103. Kobayashi A, Sasaki Y (1975) The crystal structure of α-barium 12-tungstosilicate, α-Ba2SiW12O40·16H2O. Bull Chem Soc Jpn 48:885–888

    Article  CAS  Google Scholar 

  104. Fuchs J, Thiele A, Palm R (1981) Structures and vibrational spectra of tetramethylammonium α-dodecatungstosilicate and tetrabutylammonium β-dodecatungstosilicate (Strukturen und Schwingungsspektren des Tetramethylammonium- α-Dodekawolframatosilikats und des Tetrabutylammonium β-Dodekawolframatosilikats). Z Naturforsch 36:161–171 (in German)

    Article  Google Scholar 

  105. Robert F, Tézé A, Hervé G, Jeannin Y (1980) The crystal structure of K4[β1-SiMoW11O40]·9H2O. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 36:11–15

    Article  CAS  Google Scholar 

  106. Barrows JN, Jameson GB, Pope MT (1985) Structure of a heteropoly blue. The four-electron reduced .beta.-12-molybdophosphate anion. J Am Chem Soc 107:1771–1773

    Article  CAS  Google Scholar 

  107. Shimizu N, Ozeki T, Shikama H, Sano T, Sadakane M (2013) Synthesis and structural characterization of isomers of Ru-substituted Keggin-type germanotungstate with dmso ligand. J Clust Sci 25:755–770

    Article  CAS  Google Scholar 

  108. Ishii A, Ozeki T (2005) Crystal structure of a mixed-metal β-Keggin molybdotungstosilicate, K4[A-β-SiMo3W9O40]·9H2O. Polyhedron 24:1949–1952

    Article  CAS  Google Scholar 

  109. Botar B, Ellern A, Kögerler P (2009) Acetate-controlled demetalation in multiiron polyoxometalates: a triiron cluster trapped between β- and γ-Keggin isomers. Dalton Trans 29:5606–5608

    Article  CAS  Google Scholar 

  110. Assran AS, Sankar Mal S, Izarova NV, Banerjee A, Suchopar A, Sadakane M, Kortz U (2011) Alpha and beta isomers of tetrahafnium(IV) containing decatungstosilicates, [Hf4(OH)6(CH3COO)2(x-SiW10O37)2]12− (x = α, β). Dalton Trans 40:2920–2925

  111. Cadot E, Béreau V, Marg B, Halut S, Sécheresse F (1996) Syntheses and characterization of γ-[SiW10M2S2O38]6– (M = MoV, WV). Two Keggin oxothio heteropolyanions with a metal-metal bond. Inorg Chem 35:3099–3106

    Article  CAS  PubMed  Google Scholar 

  112. Uehara K, Taketsugu T, Yonehara K, Mizuno N (2013) Effects of isolobal heteroatoms in divanadium-substituted γ-Keggin-type polyoxometalates on (OV)2(μ-OH)2 diamond and (OV)2(μ-O) core structures and the transformation. Inorg Chem 52:1133–1140

    Article  CAS  PubMed  Google Scholar 

  113. Tézé A, Cadot E, Béreau V, Hervé G (2001) About the Keggin isomers: crystal structure of [N(C4H9)4]4-γ-[SiW12O40], the γ-isomer of the Keggin ion. Synthesis and 183W NMR characterization of the mixed γ-[SiMo2W10O40]n– (n = 4 or 6). Inorg Chem 40:2000–2004

    Article  PubMed  CAS  Google Scholar 

  114. Rosenheim A, Jaenicke J (1917) About iso- and heteropoly acids. XV. Information about heteropolytungstates and several heteropolymolybdates (Zur Kenntnis der Iso- und Heteropolysäuren. XV. Mitteilung Über Heteropolywolframate und einige Heteropolymolybdänate). Z Anorg Allg Chem 101:235–275 (in German)

    Article  CAS  Google Scholar 

  115. Pope MT, Varga GM (1966) Proton magnetic resonance of aqueous metatungstate ion: evidence for two central hydrogen atoms. J Chem Soc Chem Commun 1966:653–654

    Google Scholar 

  116. Chuvaev VF, Lunk KhI, Spitsyn VI (1968) Investigation of the structure of sodium and potassium metatungstate by proton magnetic resonance. Dokl Akad Nauk SSSR Proc USSR Acad Sci 181:133–136 (Чyвaeв BФ, Лyнк XИ, Cпицын BИ (1968) Иccлeдoвaниe cтpoeния мeтaвoльфpaмaтoв нaтpия и кaлия мeтoдoм пpoтoннoгo мaгнитнoгo peзoнaнca (П.M.P.). Дoкл Aкaд Hayк CCCP 181:133–136) (in Russian)

    Google Scholar 

  117. Drechsel E (1887) Simple method to prepare some complex inorganic acids (Einfache Methode zur Darstellung einiger complexer anorganischer Säuren). Ber Dtsch Chem Ges 20:1452–1455 (in German)

    Article  Google Scholar 

  118. Matsumoto KY, Kobayashi A, Sasaki Y (1975) The crystal structure of β-K4SiW12O40·9H2O containing an isomer of the Keggin ion. Bull Chem Soc Jpn 48:3146–3151

    Article  CAS  Google Scholar 

  119. Tézé A, Cadot E, Béreau V, Hervé GG (2001) About the Keggin isomers: crystal structure of [N(C4H9)4]4-γ-[SiW12O40], the γ isomer of the Keggin ion. Synthesis and 183W NMR characterization of the mixed γ-[SiMo2W10O40]n– (n = 4 or 6). Inorg Chem 40:2000–2004

    Article  PubMed  CAS  Google Scholar 

  120. Sartzi H, Miras HN, Vilà-Nadal L, Long DL, Cronin L (2015) Trapping the δ isomer of the polyoxometalate-based Keggin cluster with a tripodal ligand. Angew Chem Int Ed 54:15488–15492

    Article  CAS  Google Scholar 

  121. Wells AF (1940) X. Finite complexes in crystals: a classification and review. Lond Edinb Dubl Phil Mag 30:103–134

    Article  CAS  Google Scholar 

  122. Dawson B (1953) The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62)·14H2O. Acta Cryst 6:113–126

    Article  CAS  Google Scholar 

  123. Lunk KhI, Varfolomeev MB, Khilmer V (1983) Thermal decomposition of H6P2W18O62·31H2O. Zh Neorg Khim 28:936–938. (Лyнк XИ, Bapфoлoмeeв MБ, Xильмep B (1983) Изyчeниe тepмичecкoгo paзлoжeния H6P2W18O62·31H2O. Ж Heopг Xим 28:936–938) (in Russian)

    CAS  Google Scholar 

  124. Schulz I (1955) About new phosphoric acid compounds of hexavalent tungsten and molybdenum (Über einige neue Phosphorsäureverbindungen des 6-wertigen Wolframs und Molybdäns). Z Anorg Allg Chem 281:99–112 (in German)

    Article  CAS  Google Scholar 

  125. Hayashi A, Wihadi MNK, Ota H, López X, Ichihashi K, Nishihara S, Inoue K, Tsunoji N, Sano T, Sadakane M (2018) Preparation of Preyssler-type phosphotungstate with one central potassium cation and potassium cation migration into the Preyssler molecule to form di-potassium-encapsulated derivative. ACS Omega 18:2363–2373

    Article  CAS  Google Scholar 

  126. Preyssler C (1970) Study on the existence of the anion 18-tungsto-3-phosphate (Étude sur l’existence de l’anion 3 phospho 18 tungstique). Bull Soc Chim Fr 1970:30–36 (in French)

    Google Scholar 

  127. Alizadeh MH, Harmalker SP, Jeannin Y, Martin-Frère J, Pope MT (1985) A heteropolyanion with fivefold molecular symmetry that contains a nonlabile encapsulated sodium ion. The structure and chemistry of [NaP5W30O110]14−. J Am Chem Soc 107:2662–2669

    Article  CAS  Google Scholar 

  128. Haider A, Zarschler K, Joshi SA, Smith RM, Lin Z, Mougharbel AS, Herzog U, Müler CE, Stephan H, Kortz U (2018) Preyssler-Pope-Jeannin polyanions [NaP5W30O110]14− and [AgP5W30O110]14−: microwave-assisted synthesis, structure, and biological activity. Z Anorg Allg Chem 644:752–758

    Article  CAS  Google Scholar 

  129. Hubert V, Hartl H (1996) Crystal structure of α-heptasodium-trihydrogennonatungstosilicate nonahydrate, α-Na7[H3SiW9O34]·9H2O (Die Kristallstruktur von α-Heptanatrium-trihydrogennonawolframosilicat-Nonahydrat, α-Na7[H3SiW9O34]·9H2O). Z Naturforsch 51b:969–974 (in German)

    Article  Google Scholar 

  130. Yasuda H, He LN, Sakakura T, Hu C (2005) Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: the remarkable effects of metal substitution. J Catal 233:119–122

    Article  CAS  Google Scholar 

  131. Liu H, Gomez-Garcia CJ, Peng J, Sha J, Li Y, Yan Y (2008) 3D transition metal mono-substituted Keggin polyoxotungstate with an antenna molecule: synthesis, structure and characterization. Dalton Trans 2008:6211–6218

    Article  CAS  Google Scholar 

  132. Xu Q, Wang X, Zhu Z, Yu D, Chen J, Hua Y, Wang C (2010) Synthesis, characterization and electrochemical properties of Keggin-type Co-substituted heteropolyanion SiW11O39-Co(II)(H2O)6−. Hainan-Shifan-Daxue-xuebao (J Hainan Normal Univ). Ziran kexue ban (Nat Sci) 23:278–282

    Google Scholar 

  133. Dianat S, Tangestaninejad S, Yadollahi B, Bordbar AK, Zarkesh-Esfahani SH, Habibi P (2014) In vitro antitumor activity of parent and nano-encapsulated mono cobalt-substituted Keggin polyoxotungstate and its ctDNA binding properties. Chem Biol Interact 215:25–32

    Article  CAS  PubMed  Google Scholar 

  134. Zhang S, Wang KY, Cheng L, Wang C (2019) Preparation and characterization of monocobalt-substituted tungstosilicate/aniline/graphene nanocomposite. J Solid State Chem 272:118–125

    Article  CAS  Google Scholar 

  135. Wassermann K, Lunk HJ, Palm R, Fuchs J (1994) A novel triply chromium(III)-substituted Keggin anion, [A-a-SiO4W9Cr3(OH)3O33]17−. Acta Crystallogr, Sect C: Struct Chem 50:348–350

    Article  Google Scholar 

  136. Wassermann K, Palm R, Lunk HJ, Fuchs J, Steinfeld N, Stösser R (1995) Condensation of Keggin anions containing chromium(III) and aluminum(III), respectively. 1. Synthesis and X-ray structural determination of [{A-a-SiO4W9O30(OH)3Cr3}2(OH)3]11−. Inorg Chem 34:5029–5036

    Article  CAS  Google Scholar 

  137. Wassermann K, Lunk HJ, Palm R, Fuchs J, Steinfeld N, Stösser R, Pope MT (1996) Polyoxoanions derived from γ-[SiO4W10O32]8− containing oxo-centered dinuclear chromium(III) carboxylate complexes: synthesis and single-crystal structural determination of γ-[SiO4W10O32(OH)Cr2(OOCCH3)2(OH2)2]5−. Inorg Chem 35:3273–3279

    Article  CAS  PubMed  Google Scholar 

  138. López X, Bo C, Poblet JM (2002) Electronic properties of polyoxometalates: electron and proton affinity of mixed-addenda Keggin and Wells-Dawson anions. J Am Chem Soc 124:12574–12582

    Article  PubMed  CAS  Google Scholar 

  139. Cadot E, Thouvenot R, Tézé A, Hervé G (1992) Syntheses and multinuclear NMR characterizations of alpha-[SiMo2W9O39]8– and alpha-[SiMo3-xVxW9O40](4+x)– (x = 1, 2) heteropolyoxometalates. Inorg Chem 31:4128–4133

    Article  CAS  Google Scholar 

  140. Gunaratne KDD, Prabhakaran V, Johnson GE, Laskin J (2015) Gas-phase fragmentation pathways of mixed addenda Keggin anions: PMo12-nWnO403– (n = 0–12). J Am Soc Mass Spectrom 26:1027–1035

    Article  CAS  PubMed  Google Scholar 

  141. Abbessi M, Contant R, Thouvenot R, Hervé G (1991) Dawson type heteropolyanions. 1. Multinuclear (31P, 51V, 183W) NMR structural investigations of octadeca(molybdotungstovanado)diphosphates α-l,2,3-[P2MM’2W15062]n (M, M’ = Mo, V, W): syntheses of new related compounds. Inorg Chem 30:1695–1702

    Article  CAS  Google Scholar 

  142. Contant R, Abbessi M, Thouvenot R, Hervé G (2004) Dawson type heteropolyanions. 3. Syntheses and 31P, 51V, and 183W NMR structural investigation of octadeca(molybdo-tungsto-vanado)diphosphates related to the [H2P2W12O48]12– anion. Inorg Chem 43:3597–3604

    Article  CAS  PubMed  Google Scholar 

  143. Ren Y, Hu Y, Shan Y, Kong Z, Gu M, Yue B (2014) A mixed addenda Nb/W polyoxometalate containing dimeric Dawson subunits: Synthesis, structure, and characterization. Inorg Chem Commun 40:108–111

    Article  CAS  Google Scholar 

  144. Anderson JS (1937) Constitution of the poly-acids. Nature 40:850

    Article  Google Scholar 

  145. Evans HT Jr (1948) The crystal structures of ammonium and potassium molybdotellurates. J Am Chem Soc 70:1291–1292

    Article  CAS  Google Scholar 

  146. Cabello CI, Cabrerizo FM, Alvarez A, Thomas HC (2002) Decamolybdodicobaltate(III) heteropolyanion: structural, spectroscopical, thermal and hydrotreating catalytic properties. J Mol Catal A Chem 186:89–100

    Article  CAS  Google Scholar 

  147. Weakley TJR (1977) The crystal structure of potassium nonamolybdomanganate(IV) hexahydrate, K6[MnMo9O32]·6H2O. J Less Common Metals 54:289–296

    Article  CAS  Google Scholar 

  148. Blazevic A, Rompel A (2016) The Anderson-Evans polyoxometalate: from inorganic building blocks via hybrid organic–inorganic structures to tomorrows ‘Bio-POM’. Coord Chem Rev 307:42–64

    Article  CAS  Google Scholar 

  149. Liu W, Lin Z, Bassil BS, Al-Oweini R, Kortz U (2015) Synthesis and structure of hexatungstochromate(III), [H3CrIIIW6O24]6–. Chimia 69:537–540

    Article  CAS  PubMed  Google Scholar 

  150. Liu W, Christian JH, Al-Oweini R, Bassil BS, van Tol J, Atanasov M, Neese F, Dalal NS, Kortz U (2014) Synthesis, detailed characterization, and theoretical understanding of mononuclear chromium(III)-containing polyoxotungstates [CrIII(HXVW7O28)2]13– (X = P, As) with exceptionally large magnetic anisotropy. Inorg Chem 53:9274–9283

    Article  CAS  PubMed  Google Scholar 

  151. Peacock RD, Weakley TJR (1971) Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J Chem Soc A 1971:1836–1839

    Article  Google Scholar 

  152. Peacock RD, Weakley TJR (1971) Heteropolytungstate complexes of the lanthanide elements. Part II. Electronic spectra: a metal-ligand charge-transfer transition of cerium(III). J Chem Soc A 1971:1937–1940

    Article  Google Scholar 

  153. Iball J, Low JN, Weakley TJR (1974) Heteropolytungstate complexes of the lanthanoid elements. Part III. Crystal structure of sodium decatungstocerate(IV)–water (1/30). J Chem Soc, Dalton Trans 1974:2021–2024

    Article  Google Scholar 

  154. Rosu C, Weakley TJR (1998) Redetermination of sodium [bis(pentatungstato)cerate(IV)](8–) 30 hydrate, Na8[Ce(W5O18)2]·30H2O. Acta Cryst. https://doi.org/10.1107/s0108270198099363

    Article  Google Scholar 

  155. Moriyasu S, Toshihiro Y (1993) Crystal structure and luminescence site of Na9[CeW10O36]·32H2O. Bull Chem Soc Jpn 66:444–449

    Article  Google Scholar 

  156. Mariichak OYu, Ignatyeva VV, Baumer VN, Rozantsev GM, Radio SV (2020) Heteropoly decatungstolanthanidates(III) with Peacock-Weakley type anion: synthesis and crystal structure of isostructural salts Na9[Ln(W5O18)2]·35H2O (Ln = Gd, Er). J Chem Cryst 1:10–67. https://doi.org/10.1007/s1087002000845154157

    Article  Google Scholar 

  157. Mariichak OYu, Kaabel S, Karpichev YA, Rozantsev GM, Radio SV, Pichon C, Bolvin H, Sutter JP (2020) Crystal structure and magnetic properties of Peacock-Weakley type polyoxometalates Na9[Ln(W5O18)2] (Ln = Tm, Yb): rare example of Tm(III) SMM. Magnetochemistry 2020:6–53. https://doi.org/10.3390/magnetochemistry6040053

    Article  CAS  Google Scholar 

  158. Dexter DD, Silverton JV (1968) A new structural type for heteropoly anions. The crystal structure of (NH4)2H6(CeMo12O42)·12H2O. J Am Chem Soc 90:3589–3590

    Article  CAS  Google Scholar 

  159. Chuvaev VF, Baydala P, Torchenkova EA, Spitsyn VI (1971) NMR spectra of ceric- and thoric molybdic heteropoly acid hydrates. Dokl Akad Nauk SSSR 196:1097–1100 (Чyвaeв BФ, Бaйдaлa П, Topчeнкoвa EA, Cпицын BИ (1971) Cпeктpы П.M.P. гидpaтoв цepи- и тopимoлибдeнoвoй гeтepoпoликиcлoт. Дoкл Aкaд Hayк CCCP 196:1097–11006) (in Russian)

    CAS  Google Scholar 

  160. Spicyn VI, Torčenkova EA, Kazanskij LP, Bajdala P (1974) New studies on the chemistry of polynuclear heteropoly compounds (Neuere Untersuchungen zur Chemie mehrkerniger Heteropolyverbindungen). Z Chem 14:1–8 (in German)

    Article  Google Scholar 

  161. Mialane P, Dolbecq A, Lisnard L, Mallard A, Marrot J, Seresse F (2002) [ε-PMo12O36(OH)4{La(H2O)4}4]5+: the first ε-PMo12O40 Keggin ion and its association with the two electron-reduced α-PMo12O40 isomer. Angew Chem Int Ed 41:2398–2401

    Article  CAS  Google Scholar 

  162. Schönherr S, Görz H, Geßner W, Bertram R (1983) Protolytic reactions in aqueous solutions of aluminum chloride (Protolysevorgänge in wäßrigen Aluminiumchloridlösungen). Z Chem 23:429–434 (in German)

    Google Scholar 

  163. Schönherr S, Görz H, Bertram R, Müller D, Gessner W (1983) Basic aluminum salts and their solutions. (XII). Comparative study of basic aluminum chloride solutions prepared differently (Über basische Aluminiumsalze und ihre Lösungen. (XII). Vergleichende Untersuchungen an unterschiedlich dargestellten Basischen Aluminiumchloridlösungen). Z Anorg Allg Chem 502:113–122 (in German)

    Article  Google Scholar 

  164. Johansson G (1960) On the crystal structure of some basic aluminum salts. Acta Chem Scand 14:771–773

    Article  CAS  Google Scholar 

  165. Michot LJ, Montagés-Pelletier E, Lartiges BS, d'Espinose of the Caillerie JB, Briois V (2000) Formation mechanism of the Ga13 Keggin ion: a combined EXAFS and NMR study. J Am Chem Soc 122:6048–6056

    Article  CAS  Google Scholar 

  166. Son JH, Kwon YU (2005) Polymorphism in intercluster salt system: two crystal structures of [Al13O4(OH)24(H2O)12][H2W12O40](OH)·nH2O. Inorg Chim Act 358:310–314

    Article  CAS  Google Scholar 

  167. Allouche L, Gérardin C, Love T, Férey G, Taulelle F (2000) Al30: a giant aluminum polycation. Angew Chem Int Ed 39:511–514

    Article  CAS  Google Scholar 

  168. Points LJ, Cooper GJT, Dolbecq A, Mialane P, Cronin L (2016) An all-inorganic polyoxometalate–polyoxocation chemical garden. Chem Commun 52:1911–1914

    Article  CAS  Google Scholar 

  169. Hughes JM, Schindler M, Francis CA (2005) The C2/M disordered structure of pascoite, Ca3[V10O28]·17H2O: bonding between structural units and interstitial complexes in compounds containing the [V10O28]6− decavanadate polyanion. Canad Mineral 43:1379–1386

    Article  CAS  Google Scholar 

  170. Kampf AR, Hughes JM, Marty J, Nash B (2011) Gunterite, Na4(H2O)16[H2V10O28]·6H2O, a new mineral species with a doubly-protonated decavanadate polyanion: crystal structure and descriptive mineralogy. Canad Mineral 49:1243–1251

    Article  CAS  Google Scholar 

  171. Colombo F, Baggio R, Kampf AR (2011) The crystal structure of the elusive huemulite. Canad Mineral 49:849–864

    Article  CAS  Google Scholar 

  172. Rakovan J, Schmidt GR, Gunter ME, Nash B, Marty J, Kampf AR, Wise WS (2011) Hughesite, Na3Al[V10O28]·22H2O, a new member of the pascoite family of minerals from the Sunday Mine, San Miguel County, Colorado. Canad Mineral 49:1253–1265

    Article  CAS  Google Scholar 

  173. Hughes JM, Schindler M, Rakovan J, Cureton FE (2002) The crystal structure of hummerite, KMg(V5O14)·8H2O: bonding between the [V10O28]6– structural unit and the {K2Mg2(H2O)16}6+ interstitial complex. Canad Mineral 40:1429–1435

    Article  CAS  Google Scholar 

  174. Kampf AR, Hughes JM, Nash B, Marty J (2014) Kokinosite, Na2Ca2[V10O28]·24H2O, a new decavanadate mineral species from the St. Jude Mine, Colorado: crystal structure and descriptive mineralogy. Canad Mineral 52:15–25

    Article  CAS  Google Scholar 

  175. Hughes JM, Wise WS, Gunter ME, Morton JP, Rakovan J (2008) Lasalite, Na2Mg2[V10O28]·20H2O, a new decavanadate mineral species from the Vanadium Queen mine, La Sal District, Utah: Description, atomic arrangement, and relationship to the pascoite group of minerals. Canad Mineral 46:1365–1372

    Article  CAS  Google Scholar 

  176. Kampf AR, Steele IM (2008) Magnesiopascoite, a new member of the pascoite group: description and crystal structure. Canad Mineral 46:679–686

    Article  CAS  Google Scholar 

  177. Kampf AR, Hughes JM, Marty J, Gunter ME, Nash B (2011) Rakovanite, Na3{H3[V10O28]}·15H2O, a new member of the pascoite family with a protonated decavanadate polyanion. Canad Mineral 49:1595–1604

    Article  Google Scholar 

  178. Kampf AR, Hughes JM, Marty J, Nash BP (2013) Wernerbaurite, {[Ca(H2O)7]2(H2O)2(H3O)2}{V10O28}, and schindlerite, {[Na2(H2O)10](H3O)4}{V10O28}, the first hydronium-bearing decavanadate minerals. Canad Mineral 51:297–312

    Article  CAS  Google Scholar 

  179. Thompson NE, Roach CH, Meyrowitz R (1958) Sherwoodite, a mixed vanadium(IV)-vanadium(V) mineral from the Colorado Plateau. Am Mineral 43:749–755

    CAS  Google Scholar 

  180. Evans HT Jr, Konnert JA (1978) The crystal chemistry of sherwoodite, a calcium l4-vanadoaluminate heteropoly complex. Am Mineral 63:863–868

    CAS  Google Scholar 

  181. Kampf AR, Hughes JM, Nash BP, Marty J (2017) Kegginite, Pb3Ca3[ε-AsO4V12O36VO]·20H2O, a new mineral with a novel ε-isomer of the Keggin anion. Am Mineral 102:461–465

    Article  Google Scholar 

  182. Kampf AR, Hughes JM, Nash BP, Wright SE, Rossman GR, Marty J (2014) Ophirite, Ca2Mg4[Zn2Mn23+(H2O)2(Fe+3W9O34)2]·46H2O, a new mineral with a heteropolytungstate tri-lacunary Keggin anion. Am Mineral 99:1045–1051

    Article  Google Scholar 

  183. Friis H, Larsen AO, Kampf AR, Evans RJ, Selbekk RS, Sanchez AA, Kihle J (2014) Peterandresenite, Mn4Nb6O19·14H2O, a new mineral containing the Lindqvist ion from a syenite pegmatite of the Larvik Plutonic Complex, southern Norway. Eur J Mineral 26:567–576

    Article  CAS  Google Scholar 

  184. Jeannin Y, Fournier M (1987) Nomenclature of polyanions. Pure Appl Chem 59:1529–1548

    Article  CAS  Google Scholar 

  185. Jeannin Y (1998) The nomenclature of polyoxometalates: how to connect a name and a structure. Chem Rev 98:51–76

    Article  CAS  PubMed  Google Scholar 

  186. Duveen DI, Klickstein HS (1954) The introduction of Lavoisier’s chemical nomenclature into America. Isis 45:278–292

    Article  CAS  PubMed  Google Scholar 

  187. Lefèvre W (1974) The Méthode de nomenclature chimique (1787): a document of transition. Ambix 65:9–29. https://doi.org/10.1080/00026980.2017.1418233

    Article  CAS  Google Scholar 

  188. Gouzerh P, Che M (2006) From Scheele and Berzelius to Müller-Polyoxometalates (POMs) revisited and the ‘missing link’ between the bottom-up and top-down approaches. Actual Chim 298:9–22

    CAS  Google Scholar 

  189. Gumerova NI, Rompel A (2020) Polyoxometalates in solution: speciation under spotlight. Chem Soc Rev. https://doi.org/10.1039/d0cs00392a

    Article  PubMed  Google Scholar 

  190. Lunk HJ (2014) Incandescent lighting and powder metallurgical manufacturing of tungsten wire. ChemTexts 1:3. https://doi.org/10.1007/s40828-014-0003-8

    Article  CAS  Google Scholar 

  191. Lunk HJ, Hartl H (2019) Discovery, properties and applications of tungsten and its inorganic compounds. ChemTexts 5:15. https://doi.org/10.1007/s40828-019-0088-1

    Article  CAS  Google Scholar 

  192. Global Tungsten & Powders Corp.: Ammonium metatungstate, Technical Information Bulletin.https://www.globaltungsten.com/fileadmin/user_upload/home/Technologies/AMT_web_TIB.pdf. Accessed 28 May 2021

  193. Centralchemical consulting. Heavy liquid for float sink separations. https://www.chem.com.au/heavy_liquid.html. Accessed 28 May 2021

  194. Kamps R, Plewinsky B, Miehe M, Wetz K (1984) Agent for the separation of dissolved and/or undissolved materials of different buoyancy densities or densities by means of solutions of true metatungstates. US Patent 4557718A

  195. Krukowski ST (1988) Sodium metatungstate: a new heavy mineral separation medium for the extraction of conodonts from insoluble residues. J Paleontol 62:314–316

    Article  Google Scholar 

  196. Müller A, Serain C (2000) Soluble molybdenum blues – “des Pudels Kern.” Acc Chem Res 33:2–10

    Article  PubMed  CAS  Google Scholar 

  197. Nagul EA, McKelvie ID, Worsfold P, Kolev SD (2015) The molybdenum blue reaction for the determination of orthophosphate revisited: opening the black box. Anal Chim Acta 890:60–82

    Article  CAS  PubMed  Google Scholar 

  198. Wang SS, Yang GY (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962

    Article  CAS  PubMed  Google Scholar 

  199. Yu B, Zou B, Hu CW (2018) Recent application of polyoxometalates in CO2 capture and transformation. J CO2 Util 26:314–322. https://doi.org/10.1016/j.jcou.2018.05.021

    Article  CAS  Google Scholar 

  200. Girardi M, Blanchard S, Griveau S, Simon P, Fontecave M, Bedioui F, Proust A (2015) Electro-assisted reduction of CO2 to CO and formaldehyde by (TOA)6[α-SiW11O39Co{ }] polyoxometalate. Eur J Inorg Chem 2015:3642–3648

    Article  CAS  Google Scholar 

  201. Ettedgui J, Diskin-Posner Y, Weiner L, Neumann R (2011) Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline–polyoxometalate hybrid complex. J Am Chem Soc 133:188–190

    Article  CAS  PubMed  Google Scholar 

  202. Gao G, Li F, Lin Xu, Liu X, Yang Y (2008) CO2 coordination by inorganic polyoxoanion in water. J Am Chem Soc 130:10838–10839

    Article  CAS  PubMed  Google Scholar 

  203. Li N, Liu J, Dong BX, Lan YQ (2020) Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew Chem Int Ed 59:20779–20793

    Article  CAS  Google Scholar 

  204. Chen F, Dong T, Chi Y, Xu Y, Hu C (2010) Transition-metal-substituted Keggin-type germanotungstates for catalytic conversion of carbon dioxide to cyclic carbonate. Catal Lett 139:38–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martin Fait, Ulrich Kortz and particularly Fritz Scholz for their helpful suggestions. Our special thanks go to Ralf T. Schmitt from Museum für Naturkunde in Berlin for providing Figs. 17, 18 as well as to Ann E. Benbow from Mineralogical Society of America for providing Figs. 19, 20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lunk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunk, HJ., Hartl, H. The fascinating polyoxometalates. ChemTexts 7, 26 (2021). https://doi.org/10.1007/s40828-021-00145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-021-00145-y

Keywords

Navigation