Skip to main content

Advertisement

Log in

Synthesis of MnO2/NiCo-Layered Double Hydroxide Hybrid as Electrode Materials for Supercapacitor

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

MnO2 nanosheets decorated with NiCo-LDH nanoplates were developed for high-performance supercapacitors. The construction strategy involved a facile two-step method including hydrothermal step and co-precipitation step. The samples were characterized by TEM, XRD, XPS, BET, and FT-IR. The prepared MnO2/NiCo-LDH composites with a large specific surface area and a certain active sites, realized the excellent energy storage capability in supercapacitors, due to the proper integration and optimization of the advantages of both MnO2 and LDH. Consequently, MnO2/NiCo-LDH shows a specific capacitance 555.6 F/g at current density of 1 A/g in 6 M KOH electrolyte, which is much higher than that of pure MnO2. Besides, MnO2/NiCo-LDH still can keep good cycling stability after 1000 cycles. This study indicates that MnO2/NiCo-LDH composite may have great potential as electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Afir, S.M.H. Rahman, A.T. Azad, J. Zaini, M.A. Islan, A.K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage-a review. J. Energy Storage. 25, 100852 (2019)

    Article  Google Scholar 

  2. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014)

    Article  Google Scholar 

  3. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  4. Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, Polyaniline/Cu(II) metal-organic frameworks composite for high performance supercapacitor electrode. J. Inorg. Organomet. Polym. 29, 1838–1847 (2019)

    Article  CAS  Google Scholar 

  5. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D. Nedumaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organomet. Polym. Mater. 28(5), 2046–2055 (2018)

    Article  CAS  Google Scholar 

  6. S. Chaudhary, L.S. James, A.K. Kumar, C.V. Ramana, D.K. Mishra, S. Thomas, D. Kim, Reduced graphene oxide/ZnO nanorods nanocomposite: structural, electrical and electrochemical properties. J. Inorg. Organomet. Polym. Mater. 29(6), 2282–2290 (2019)

    Article  CAS  Google Scholar 

  7. C. Wu, Y. Zhu, M. Ding, C. Jia, K. Zhang, Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes. Electrochimica Acta. 291, 249–255 (2018)

    Article  CAS  Google Scholar 

  8. Z. Zhang, X. Su, Y. Zhu, Z. Chen, Z. Fang, X. Luo, Porous multishelled NiO hollow microspheres encapsulated within three-dimensional graphene as flexible free-standing electrodes for high-performance supercapacitors. Nanoscale. 11, 16071–16079 (2019)

    Article  CAS  Google Scholar 

  9. S. Xiong, C. Yuan, M. Zhang, B. Xi, Y. Qian, Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem-Eur. J. 15, 5320–5326 (2009)

    Article  CAS  Google Scholar 

  10. Z.-S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010)

    Article  CAS  Google Scholar 

  11. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)

    Article  CAS  Google Scholar 

  12. M. Aghazadeh, M. Asadi, M.G. Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl. Surf. Sci. 364, 726–731 (2016)

    Article  CAS  Google Scholar 

  13. J. Zang, X. Li, In situ synthesis of ultrafine beta-MnO2/polypyrrole nanorod composites for high-performance supercapacitors. J. Mater. Chem. 21, 10965–10969 (2011)

    Article  CAS  Google Scholar 

  14. B. Ming, J. Li, F. Kang, G. Pang, Y. Zhang, L. Chen, J. Xu, X. Wang, Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J. Power Sources 198, 428–431 (2012)

    Article  CAS  Google Scholar 

  15. M. Huang, Y. Zhang, F. Li, L. Zhang, R.S. Ruoff, Z. Wen, Q. Liu, Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci. Rep. 4, 3878 (2014)

    Article  Google Scholar 

  16. P. Yang, Y. Li, Z. Lin, Y. Ding, S. Yue, C.P. Wong, X. Cai, S. Tan, W. Mai, Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J. Mater. Chem. A 2, 595–599 (2014)

    Article  CAS  Google Scholar 

  17. Z. Li, X. Wang, X. Wang, T. Xiao, L. Zhang, P. Lv, J. Zhao, Preparation and properties of MnO2–TiO2 nanotube array composite electrodes using titanium foam as the current collector. Int. J. Hydrogen Energy. 43, 8859–8867 (2018)

    Article  CAS  Google Scholar 

  18. H. Zhou, X. Zou, Y. Zhang, Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors. Electrochim. Acta. 192, 259–267 (2016)

    Article  CAS  Google Scholar 

  19. F. He, Z. Hu, K. Liu, S. Zhang, H. Liu, S. Sang, In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel, electrode material for supercapacitors. J. Power Sources 267, 188–196 (2014)

    Article  CAS  Google Scholar 

  20. J. Yu, Q. Wang, D. O'Hare, L. Sun, Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 46, 5950–5974 (2017)

    Article  CAS  Google Scholar 

  21. B. Han, G. Cheng, E. Zhang, L. Zhang, X. Wang, Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochim. Acta. 263, 391–399 (2018)

    Article  CAS  Google Scholar 

  22. X. Hua, C.J. Mao, J.S. Chen, P.P. Chen, C.F. Zhang, Facile synthesis of new-type MnOOH/NiAl-layered double hydroxide nanocomposite for high-performance supercapacitor. J. Alloys Compd. 777, 749–758 (2019)

    Article  CAS  Google Scholar 

  23. J. Yang, C. Yu, X. Fan, C. Zhao, J. Qiu, Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 25, 2109–2116 (2015)

    Article  CAS  Google Scholar 

  24. T.S. Tran, K.M. Tripathi, B.N. Kim, I.K. You, B.J. Park, Y.H. Han, T. Kim, Three-dimensionally assembled graphene/alpha-MnO2 nanowire hybrid hydrogels for high performance supercapacitors. Mater. Res. Bull. 96, 395–404 (2017)

    Article  CAS  Google Scholar 

  25. Z. Shu, Y. Chen, W. Huang, X. Cui, L. Zhang, H. Chen, G. Zhang, X. Fan, Y. Wang, G. Tao, D. He, J. Shi, Room-temperature catalytic removal of low-concentration NO over mesoporous Fe-Mn binary oxide synthesized using a template-free approach. Appl. Catal. B 140, 42–50 (2013)

    Article  Google Scholar 

  26. H. Lv, X. Gao, Q. Xu, H. Liu, Y.-G. Wang, Y. Xia, Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 9, 40394–40403 (2017)

    Article  CAS  Google Scholar 

  27. H. Liang, H. Jia, T. Lin, Z. Wang, C. Li, S. Chen, J. Qi, J. Cao, W. Fei, J. Feng, Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors. J. Colloid Interface Sci. 554, 59–65 (2019)

    Article  CAS  Google Scholar 

  28. Y. Yang, X. Su, L. Zhang, P. Kerns, L. Achola, V. Hayes, R. Quardokus, S.L. Suib, J. He, Intercalating MnO2 nanosheets with transition metal cations to enhance oxygen evolution. ChemCatChem 11, 1689–1700 (2019)

    Article  CAS  Google Scholar 

  29. B.S. Singu, U. Male, S.E. Hong, K.R. Yoon, Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics 22, 1485–1491 (2016)

    Article  CAS  Google Scholar 

  30. N. Wang, P. Zhao, K. Liang, M.Q. Yao, Y. Yang, W.C. Hua, CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem. Eng. J. 307, 105–112 (2017)

    Article  CAS  Google Scholar 

  31. D. Shin, J. Shin, T. Yeo, H. Hwang, S. Park, W. Choi, Scalable synthesis of tripleCore-Shell nanostructures of TiO2@MnO2@C for high performance supercapacitors using structure-guided combustion waves. Small 14, 1703755 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21706002), Natural Science Foundation of Anhui Province (1808085QB53)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshuai Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhang, J., Sun, C. et al. Synthesis of MnO2/NiCo-Layered Double Hydroxide Hybrid as Electrode Materials for Supercapacitor. J Inorg Organomet Polym 30, 3179–3187 (2020). https://doi.org/10.1007/s10904-020-01481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01481-1

Keywords

Navigation