Skip to main content

Advertisement

Log in

An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

NiCo layered double hydroxides (LDHs) for supercapacitors have been studied by virtue of the high specific capacitance theoretical values. However, less active sites limit the further increase of their specific capacitances. Metal-organic framework (MOF), as a promising material, has attracted intense attention with enormous specific area and adjustable structure. Herein, a practical strategy was designed to improve the active sites of the binder-free electrode by potentiostatic deposition and soaking NiCo-LDHs in 2-methylimidazole for in situ growth of MOF. This layered NiCo-MOF was obtained at room temperature which can retain more active sites to enhance capacitive properties. In particular, the prepared layered NiCo-MOF obtained a superior capacitance (1289 F g−1 at 0.5 A g−1), along with a remarkable rate capability (767 F g−1 at 20 A g−1). In addition, the as-prepared asymmetric supercapacitor exhibited a maximum specific energy of 57.8 Wh kg−1 at 748.7 W kg−1 (at a working potential of 1.5 V), and it retained 71.40% capacitance after 6000 cycles. All of these findings suggest that this work gives a practical way to synthesize NiCo-MOF nanosheets, and it exhibits excellent prospect in further energy field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  2. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y (2019) Energy storage: the future enabled by nanomaterials. Science 366:eaan8285. https://doi.org/10.1126/science.aan8285

    Article  CAS  PubMed  Google Scholar 

  3. Yang G, Park SJ (2019) The formation mechanism of Li4Ti5O12-y solid solutions prepared by carbothermal reduction and the effect of Ti3+ on electrochemical performance. Sci Rep 9:4774. https://doi.org/10.1038/s41598-019-41206-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang G, Park S-J (2020) Single-step solid-state synthesis and characterization of Li4Ti5−xFexO12−y (0≤x≤0.1) as an anode for lithium-ion batteries. J Mater Chem A 8:2627–2636. https://doi.org/10.1039/C9TA12117J

    Article  CAS  Google Scholar 

  5. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816. https://doi.org/10.1002/aenm.201300816

    Article  CAS  Google Scholar 

  6. Xiong G, He P, Lyu Z, Chen T, Huang B, Chen L, Fisher TS (2018) Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat Commun 9:790. https://doi.org/10.1038/s41467-018-03112-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dinca M (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220–224. https://doi.org/10.1038/nmat4766

    Article  CAS  PubMed  Google Scholar 

  8. Das D, Nanda KK (2016) One-step integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy 30:303–311. https://doi.org/10.1016/j.nanoen.2016.10.024

    Article  CAS  Google Scholar 

  9. Yang G, Park S-J (2018) MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications. J Alloy Compd 741:360–367. https://doi.org/10.1016/j.jallcom.2018.01.108

    Article  CAS  Google Scholar 

  10. Zou Y, Cai C, Xiang C, Huang P, Chu H, She Z, Xu F, Sun L, Kraatz H-B (2018) Simple synthesis of core-shell structure of Co-Co3O4@carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor. Electrochim Acta 261:537–547. https://doi.org/10.1016/j.electacta.2017.12.184

    Article  CAS  Google Scholar 

  11. Wang T, Yu F, Wang X, Xi S, Chen K-J, Wang H (2020) Enhancing cycling stability of transition metal-based layered double hydroxides through a self-sacrificial strategy for hybrid supercapacitors. Electrochim Acta 334:135586. https://doi.org/10.1016/j.electacta.2019.135586

    Article  CAS  Google Scholar 

  12. Pan Z, Jiang Y, Yang P, Wu Z, Tian W, Liu L, Song Y, Gu Q, Sun D, Hu L (2018) In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12(3):2968–2979. https://doi.org/10.1021/acsnano.8b00653

    Article  CAS  PubMed  Google Scholar 

  13. Liu T, Zhang L, Cheng B, You W, Yu J (2018) Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chem Commun 54:3731–3734. https://doi.org/10.1039/C8CC00991K

    Article  CAS  Google Scholar 

  14. Huo WC, Liu XL, Yuan YS, Li N, Lan T, Liu XY, Zhang YX (2018) Facile synthesis of manganese cobalt oxide/nickel cobalt oxide composites for high-performance supercapacitors. Front Chem 6:661. https://doi.org/10.3389/fchem.2018.00661

    Article  CAS  PubMed  Google Scholar 

  15. Chen W, Wang J, Ma KY, Li M, Guo SH, Liu F, Cheng JP (2018) Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor. Appl Surf Sci 451:280–288. https://doi.org/10.1016/j.apsusc.2018.04.254

    Article  CAS  Google Scholar 

  16. Chen HC, Qin Y, Cao H, Song X, Huang C, Feng H, Zhao XS (2019) Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater 17:194–203. https://doi.org/10.1016/j.ensm.2018.07.018

    Article  Google Scholar 

  17. Lee J-SM, Briggs ME, Hu C-C, Cooper AI (2018) Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46:277–289. https://doi.org/10.1016/j.nanoen.2018.01.042

    Article  CAS  Google Scholar 

  18. Ding Q, Xu X, Yue Y, Mei C, Huang C, Jiang S, Wu Q, Han J (2018) Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces 10:27987–28002. https://doi.org/10.1021/acsami.8b09656

    Article  CAS  PubMed  Google Scholar 

  19. Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259. https://doi.org/10.1002/aenm.201703259

    Article  CAS  Google Scholar 

  20. Gao Q, Wang X, Shi Z, Ye Z, Wang W, Zhang N, Hong Z, Zhi M (2018) Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem Eng J 331:185–193. https://doi.org/10.1016/j.cej.2017.08.067

    Article  CAS  Google Scholar 

  21. Wei W, Wu J, Cui S, Zhao Y, Chen W, Mi L (2019) Alpha-Ni(OH)2/NiS1.97 heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale 11:6243–6253. https://doi.org/10.1039/C9NR00962K

    Article  CAS  PubMed  Google Scholar 

  22. Guo XL, Liu XY, Hao XD, Zhu SJ, Dong F, Wen ZQ, Zhang YX (2016) Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials. Electrochim Acta 194:179–186. https://doi.org/10.1016/j.electacta.2016.02.080

    Article  CAS  Google Scholar 

  23. Li X, Yu L, Wang G, Wan G, Peng X, Wang K, Wang G (2017) Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors. Electrochim Acta 255:15–22. https://doi.org/10.1016/j.electacta.2017.09.155

    Article  CAS  Google Scholar 

  24. Liu PF, Zhou JJ, Li GC, Wu MK, Tao K, Yi FY, Zhao WN, Han L (2017) A hierarchical NiO/NiMn-layered double hydroxide nanosheet array on Ni foam for high performance supercapacitors. Dalton Trans 46:7388–7391. https://doi.org/10.1039/C7DT00932A

    Article  CAS  PubMed  Google Scholar 

  25. Guo D, Song X, Tan L, Ma H, Sun W, Pang H, Zhang L, Wang X (2019) A facile dissolved and reassembled strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent supercapacitor performance. Chem Eng J 356:955–963. https://doi.org/10.1016/j.cej.2018.09.101

    Article  CAS  Google Scholar 

  26. Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H (2017) Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7:1602733. https://doi.org/10.1002/aenm.201602733

    Article  CAS  Google Scholar 

  27. Wu MX, Yang YW (2017) Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 29:1606134. https://doi.org/10.1002/adma.201606134

    Article  CAS  Google Scholar 

  28. Wang S, Wang Q, Feng X, Wang B, Yang L (2017) Explosives in the cage: metal-organic frameworks for high-energy materials sensing and desensitization. Adv Mater 29:1701898. https://doi.org/10.1002/adma.201701898

    Article  CAS  Google Scholar 

  29. Li H, Lang J, Lei S, Chen J, Wang K, Liu L, Zhang T, Liu W, Yan X (2018) A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv Funct Mater 28:1800757. https://doi.org/10.1002/adfm.201800757

    Article  CAS  Google Scholar 

  30. Kang Z, Fan L, Sun D (2017) Recent advances and challenges of metal-organic framework membranes for gas separation. J Mater Chem A 5:10073–10091. https://doi.org/10.1039/C7TA01142C

    Article  CAS  Google Scholar 

  31. Chen Y-Z, Zhang R, Jiao L, Jiang H-L (2018) Metal-organic framework-derived porous materials for catalysis. Coordin Chem Rev 362:1–23. https://doi.org/10.1016/j.ccr.2018.02.008

    Article  CAS  Google Scholar 

  32. Wang Y, Liu Y, Wang H, Liu W, Li Y, Zhang J, Hou H, Yang J (2019) Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl Energy Mater 2:2063–2071. https://doi.org/10.1021/acsaem.8b02128

    Article  CAS  Google Scholar 

  33. Sun S, Huang M, Wang P, Lu M (2019) Controllable hydrothermal synthesis of Ni/Co MOF as hybrid advanced electrode materials for supercapacitor. J Electrochem Soc 166:A1799–A1805. https://doi.org/10.1149/2.0291910jes

    Article  CAS  Google Scholar 

  34. Wang Y, Huang J, Xiao Y, Peng Z, Yuan K, Tan L, Chen Y (2019) Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance. Carbon 147:146–153. https://doi.org/10.1016/j.carbon.2019.02.082

    Article  CAS  Google Scholar 

  35. Lee G, Na W, Kim J, Lee S, Jang J (2019) Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J Mater Chem A 7(29):17637–17647. https://doi.org/10.1039/C9TA05138D

    Article  CAS  Google Scholar 

  36. Zhang X, Luo J, Tang P, Ye X, Peng X, Tang H, Sun S-G, Fransaer J (2017) A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading. Nano Energy 31:311–321. https://doi.org/10.1016/j.nanoen.2016.11.024

    Article  CAS  Google Scholar 

  37. Shabangoli Y, Rahmanifar MS, El-Kady MF, Noori A, Mousavi MF, Kaner RB (2018) An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Mater 11:282–293. https://doi.org/10.1016/j.ensm.2017.09.010

    Article  Google Scholar 

  38. Wei M, Huang Q, Zhou Y, Peng Z, Chu W (2018) Ultrathin nanosheets of cobalt-nickel hydroxides hetero-structure via electrodeposition and precursor adjustment with excellent performance for supercapacitor. J Energy Chem 27:591–599. https://doi.org/10.1016/j.jechem.2017.10.022

    Article  Google Scholar 

  39. Veeramani V, Madhu R, Chen S-M, Sivakumar M, Hung C-T, Miyamoto N, Liu S-B (2017) NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors. Electrochim Acta 247:288–295. https://doi.org/10.1016/j.electacta.2017.06.171

    Article  CAS  Google Scholar 

  40. Yang G, Park S-J (2020) Nanoflower-like NiCo2O4 grown on biomass carbon coated nickel foam for asymmetric supercapacitor. J Alloy Compd 835:155270. https://doi.org/10.1016/j.jallcom.2020.155270

    Article  CAS  Google Scholar 

  41. Zhu Y, Huang C, Li C, Fan M, Shu K, Chen HC (2019) Strong synergetic electrochemistry between transition metals of α phase Ni-Co-Mn hydroxide contributed superior performance for hybrid supercapacitors, J. Power Sour 412:559–567. https://doi.org/10.1016/j.jpowsour.2018.11.080

    Article  CAS  Google Scholar 

  42. Ye L, Bao Z, Zhao Y, Zhao L (2018) Flowery nickel-cobalt hydroxide via a solid-liquid sulphur ion grafting route and its application in hybrid supercapacitive storage. RSC Adv 8:23817–23824. https://doi.org/10.1016/10.1039/C8RA02791A

    Article  CAS  Google Scholar 

  43. Du Y, Li G, Chen M, Yang X, Ye L, Liu X, Zhao L (2019) Hollow nickel-cobalt-manganese hydroxide polyhedra via MOF templates for high-performance quasi-solid-state supercapacitor. Chem Eng J 378:122210. https://doi.org/10.1016/j.cej.2019.122210

    Article  CAS  Google Scholar 

  44. Liang X, Quan B, Chen J, Tang D, Zhang B, Ji G (2017) Strong electric wave response derived from the hybrid of lotus roots-like composites with tunable permittivity. Sci Rep 7:9462. https://doi.org/10.1038/s41598-017-09985-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kurisingal JF, Babu R, Kim S-H, Li YX, Chang J-S, Cho SJ, Park D-W (2018) Microwave-induced synthesis of a bimetallic charge-transfer metal organic framework: a promising host for the chemical fixation of CO2. Catal Sci Technol 8:591–600. https://doi.org/10.1039/C7CY02063E

    Article  CAS  Google Scholar 

  46. Hong J, Park S-J, Kim S (2019) Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim Acta 311:62–71. https://doi.org/10.1016/j.electacta.2019.04.121

    Article  CAS  Google Scholar 

  47. Yang G, Park S-J (2018) Facile hydrothermal synthesis of NiCo2O4-decorated filter carbon as electrodes for high performance asymmetric supercapacitors. Electrochim Acta 285:405–414. https://doi.org/10.1016/j.electacta.2018.08.013

    Article  CAS  Google Scholar 

  48. Li M, Jijie R, Barras A, Roussel P, Szunerits S, Boukherroub R (2019) NiFe layered double hydroxide electrodeposited on Ni foam coated with reduced graphene oxide for high-performance supercapacitors. Electrochim Acta 302:1–9. https://doi.org/10.1016/j.electacta.2019.01.187

    Article  CAS  Google Scholar 

  49. Huang M, Mi K, Zhang J, Liu H, Yu T, Yuan A, Kong Q, Xiong S (2017) MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Materials Chemistry A 5:266–274. https://doi.org/10.1039/C6TA09030C

    Article  CAS  Google Scholar 

  50. Zhao B, Zhang B, Lu C, Cai Z, Li L (2020) Hierarchical hollow nanocages of Ni-Co amorphous double hydroxides for high-performance asymmetric supercapacitors. J Alloy Compd 833:155130. https://doi.org/10.1016/j.jallcom.2020.155130

    Article  CAS  Google Scholar 

  51. Youssry SM, El-Hallag IS, Kumar R, Kawamura G, Matsuda A, El-Nahass MN (2020) Synthesis of mesoporous Co(OH)2 nanostructure film via electrochemical deposition using lyotropic liquid crystal template as improved electrode materials for supercapacitors application, J Electroanal Chem 857. https://doi.org/10.1016/j.jelechem.2019.113728

  52. Qiu H, Sun X, An S, Lan D, Cui J, Zhang Y, He W (2020) Microwave synthesis of histidine-functionalized graphene quantum dots/Ni-Co LDH with flower ball structure for supercapacitor. J Colloid Interface Sci 567:264–273. https://doi.org/10.1016/j.jcis.2020.02.018

    Article  CAS  PubMed  Google Scholar 

  53. Liu L, Fang L, Wu F, Hu J, Zhang S, Luo H, Hu B, Zhou M (2020) Self-supported core-shell heterostructure MnO2/NiCo-LDH composite for flexible high-performance supercapacitor. J Alloy Compd 824:153929. https://doi.org/10.1016/j.jallcom.2020.153929

    Article  CAS  Google Scholar 

  54. Gao X, Bi J, Wang W, Liu H, Chen Y, Hao X, Sun X, Liu R (2020) Morphology-controllable synthesis of NiFe2O4 growing on graphene nanosheets as advanced electrode material for high performance supercapacitors, J Alloy Compd 826. https://doi.org/10.1016/j.jallcom.2020.154088

  55. Su C, Xu S, Zhang L, Chen X, Guan G, Hu N, Su Y, Zhou Z, Wei H, Yang Z, Qin Y (2019) Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors. Electrochim Acta 305:81–89. https://doi.org/10.1016/j.electacta.2019.03.013

    Article  CAS  Google Scholar 

Download references

Funding

This work was sponsored by the National Science Youth Foundation (21106083), Natural Science Foundation of Shanghai (19ZR1455000), Shanghai Engineering Research Center of Building Waterproof Materials (18DZ2253200), Scientific Research Foundation of Shanghai Institute of Technology (YJ2019-14), Shanghai Innovation action plan project (15520503400), and Shanghai alliance program (LM201933, LM201951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, R., Zhao, C., Huang, Z. et al. An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors. Ionics 26, 6309–6318 (2020). https://doi.org/10.1007/s11581-020-03727-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03727-x

Keywords

Navigation