Skip to main content

Advertisement

Log in

Reduced Graphene Oxide/ZnO Nanorods Nanocomposite: Structural, Electrical and Electrochemical Properties

  • Communication
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present research work aimed to development of reduced graphene oxide (rGO) and ZnO nanorods based rZN nanocomposite with different molar ratios. This nanocomposite was prepared using a simple, one-step thermal reaction method. The morphology, phase identification and crystalline properties of the nanocomposites were studied using SEM, TEM, SAED and XRD techniques. Further, EDS analysis was used for elemental conformation of the nanocomposite. Films of the nanocomposite were deposited on a substrate by the cost-effective spin coating technique and the resistivity was measured by a Hall measurement system, which shows a decrease in resistivity value. The electrochemical properties studied by measuring the specific capacitance using cyclic voltammetry (CV) and galvanostatic charge–discharge techniques in 3 M KOH solution. These CV studies indicated that the positive synergistic effect of rGO and ZnO nanorods has shown excellent performance. The best results were obtained from the 1:2 ratio of rGO: ZnO, which demonstrated a specific capacitance of 472 F/g, an energy density of 2.62 Wh/kg, and a power density of 32.24 W/kg. These results concluded that rZN nanocomposites are promising electrode materials for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. H.A.A. Bashid, H.N. Lim, S. Kamaruzaman, S.A. Rashid, R. Yunus, N.M. Huang, C.Y. Yin, MdM Rahman, MdN Altarawneh, Z.T. Jiang, P. Alagarsamy, Electrodeposition of polypyrrole and reduced graphene oxide onto carbon bundle fibre as electrode for super capacitor. Nanoscale Res. Lett. 12, 246 (2017). https://doi.org/10.1186/s11671-017-2010-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Bana, J. Zhang, L. Zhang, K. Tsay, D. Song, X. Zou, Charging and discharging electrochemical super capacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. Electrochim. Acta 90, 542–549 (2013)

    Article  Google Scholar 

  3. M. Saranya, R. Ramachandran, F. Wang, Graphene-Zinc oxide (G-ZnO) nanocomposite for electrochemical super capacitor applications. J. Sci. 1, 454–460 (2016)

    Google Scholar 

  4. H. Yuvaraj, V. Walter, J.-J. Shima, Nano ZnO@reduced graphene oxide composite for high performance super capacitor: green synthesis in super critical fluid. Electrochim. Acta 120, 65–72 (2014)

    Article  Google Scholar 

  5. S. Chaudhary, A.B.V. Kiran Kumar, N.D. Sharma, M. Gupta, Cauliflower—shaped ternary nanocomposites with enhanced power and energy density for supercapacitors. Int. J. Energy Res. (2019). https://doi.org/10.1002/r.4486

    Article  Google Scholar 

  6. M. Raja, A B V Kiran Kumar, N Arora and J Subha, Studies on electrochemical properties of ZnO/rGO nanocomposites as electrode materials for supercapacitors. Fuller Nanotub Carbon Nanostruct. 23, 691–694 (2014)

    Article  Google Scholar 

  7. S. Chaudhary, P. Sudharshana Bhashyam, A.B.V. Kiran Kumar, Polyaniline and charcoal binary nanocomposite as an electrode material for super capacitor applications (accepted in IEEE Explore)

  8. A.B.V. Kiran Kumar, E.S. Saila, P. Narang, M. Aishwarya, R. Raina, M. Gautam, E.G. Shankar, Inorg. Chem. Commun. 100, 101 (2019)

    CAS  Google Scholar 

  9. C.H.V.V. Ramana, M.K. Moodley, A.B.V. Kiran Kumar, V. Kannan, Charge carrier transport mechanism based on stable low voltage organic bistable memory device. J. Nanosci. Nanotechnol. 15(5), 3934–3938 (2015)

    Article  CAS  Google Scholar 

  10. A. Kumar, S. Billa, S. Chaudhary, A.B.V. Kiran Kumar, C.V.V. Ramana, D. Kim, Inorg. Chem. Commun. 97, 191 (2018)

    CAS  Google Scholar 

  11. S. Ghosh, B. Sanjeev, M. Gupta, A.B.V.K. Kumar, Ceram. Int. 45, 1314 (2019)

    Article  CAS  Google Scholar 

  12. C.H.V.V. Ramana, M.K. Moodley, A.B.V. Kiran Kumar, A. Maity, V.V. Srinivasu, Hysteresis type current-voltage characteristics of indium tin oxide/poly-[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEHPPV) + zinc oxide (ZnO)/Al structure: towards memory device. Nanosci. Nanotechnol. Lett. 4, 12 (2012)

    Article  Google Scholar 

  13. C.H.V.V. Ramana, M.K. Moodley, V. Kannan, A. Maity, J. Jayaramudu, W. Clarke, Fabrication of stable low voltage organic bistable memory device. Sens. Actuators B 161(1), 684–688 (2012)

    Article  CAS  Google Scholar 

  14. V. Kannan, Y.S. Chae, C.H.V.V. Ramana, J.K. Rhee, All inorganic spin-cast quantum dot based bipolar non-volatile resistive memory. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3573601

    Article  Google Scholar 

  15. V. Kannan, M.R. Kim, Y.S. Chae, C.H.V.V. Ramana, J.K. Rhee, Observation of room temperature negative differential resistance in multi-layer heterostructures of quantum dots and conducting polymers. Nanotechnology (2011). https://doi.org/10.1088/0957-4484/22/2/025705

    Article  PubMed  Google Scholar 

  16. D.J. Fortman, J.P. Brutman, G.X. De Hoe, R.L. Snyder, W.R. Dichtel, M.A. Hillmyer, ACS Sustain (Chem, Eng, 2018)

    Google Scholar 

  17. X.Q. Qiao, Z.W. Zhang, F.Y. Tian, D.F. Hou, Z.F. Tian, D.S. Li, Q. Zhang, Cryst. Growth Des. 17, 3538 (2017)

    Article  CAS  Google Scholar 

  18. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultra-capacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  CAS  Google Scholar 

  19. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006)

    Article  CAS  Google Scholar 

  20. Y. Li, K. Sheng, W. Yuan, G. Shi, A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem. Commun. 49(3), 291–293 (2013)

    Article  Google Scholar 

  21. Y.S. Lim, Y.P. Tan, H.N. Lim, W.T. Tan, M.A. Mahnaz, Z.A. Talib, N.M. Huang, A. Kassim, M.A. Yarmo, Polypyrrole/graphene composite films synthesized via potentiostatic deposition. J. Appl. Polym. Sci. 128(1), 224–229 (2013)

    Article  CAS  Google Scholar 

  22. T. Lu, L. Pan, H. Li, G. Zhu, T. Lv, X. Liu, Z. Sun, T. Chen, D.H.C. Chua, Microwave-assisted synthesis of graphene-ZnO nanocomposite for electrochemical super capacitors. J. Alloys. Compds 509(18), 5488–5492 (2011)

    Article  CAS  Google Scholar 

  23. R. Kandulna, R.B. Choudhary, Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications. Optik (Stuttg) 144, 40–48 (2017)

    Article  CAS  Google Scholar 

  24. R. Vinoth, S.G. Babu, V. Bharti, V. Gupta, M. Navaneethan, S.V.P. Bhat, C. Muthamizhchevan, P.C. Ramamurthy, C. Sharma, D.K. Aswal, Y. Hayakawa, B. Neppolian, Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells. Sci. Rep. 7, 43133-14 (2017). https://doi.org/10.1038/srep43133

    Article  CAS  Google Scholar 

  25. I.Y.Y. Bu, R. Huang, One-pot synthesis of ZnO/reduced graphene oxide nanocomposite for super capacitor applications. Mater. Sci. Semicond. Process. 31, 131–138 (2015)

    Article  CAS  Google Scholar 

  26. S. Mondal, U. Rana, S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance super capacitor electrode materials. Chem. Commun. 51(62), 12365–12368 (2015)

    Article  CAS  Google Scholar 

  27. A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as super capacitor. Electrochim. Acta 88, 347–357 (2013)

    Article  CAS  Google Scholar 

  28. A.A.B. Hamra, H.N. Lim, W.K. Chee, N.M. Huang, Electro-exfoliating graphene from graphite for direct fabrication of super capacitor. Appl. Surf. Sci. 360, 213–223 (2016)

    Article  CAS  Google Scholar 

  29. L. Huang, G. Guo, Y. Liu, Q. Chang, W. Shi, Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates. Mater. Res. Bull. 48(10), 4163–4167 (2013)

    Article  CAS  Google Scholar 

  30. T. Lu, L. Pan, H. Li, G. Zhu, T. Lv, X. Liu, Z. Sun, T. Chen, D.H.C. Chua, Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. J. Alloys Compd. 509, 5488–5492 (2011)

    Article  CAS  Google Scholar 

  31. Y. Guo, B. Chang, T. Wen, C. Zhao, H. Yin, Y. Zhou, Y. Wang, B. Yang, S. Zhang, One-pot synthesis of graphene/zinc oxide by microwave irradiation with enhanced supercapacitor performance. RSC Adv. 6, 19394–19403 (2016)

    Article  CAS  Google Scholar 

  32. Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Polym. Sci. A 48, 2642–2649 (2010)

    Article  CAS  Google Scholar 

  33. Y.-L. Chen, Z.-A. Hu, Y.-Q. Chang, H.-W. Wang, Z.-Y. Zhang, Y.-Y. Yang, H.-Y. Wu, Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Phys. Chem. C 115, 2563–2571 (2011)

    Article  CAS  Google Scholar 

  34. Z. Qin, Z.J. Li, G.Q. Yun, K. Shi, K. Li, B.C. Yang, ZnO nanorods inserted graphene sheets with improved super capacitive performance. Appl. Surf. Sci. 292, 544–550 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the UGC-DAE Consortium for Scientific Research project with reference numbers CSR-IC-BL-48/CRS-165/2016-17/829, 2017-18/786, and CSR-IC/BL-48/CRS-165/2018-19/1421. The authors CH.V.V. Ramana and Daewon Kim are grateful for the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03025708) for research support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. V. Kiran Kumar or Daewon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., James, L.S., Kiran Kumar, A.B.V. et al. Reduced Graphene Oxide/ZnO Nanorods Nanocomposite: Structural, Electrical and Electrochemical Properties. J Inorg Organomet Polym 29, 2282–2290 (2019). https://doi.org/10.1007/s10904-019-01172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01172-6

Keywords

Navigation