Skip to main content
Log in

Nonstoichiometric Mesoporous Cu1.90S Nanoparticles Hydrothermally Prepared from a Copper Anthranilato Complex Inhibit Cellulases of Phytopathogenic Fungi

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A copper sulfide precursor of the general formula Cu(C13H9O2NCl)2(H2O)2 {C13H9O2NCl = 2-(2-chlorophenylamino)benzoate} was synthesized and routinely characterized regarding its CHN content, solution molar conductivity, powder X-ray diffraction (PXRD) pattern, magnetic moment and IR spectroscopic data. Copper sulfide Cu1.90S nanoparticles (CSNPs) were hydrothermally grown from this precursor and thiourea. The NPs were characterized by means of elemental analyses, PXRD and transmission electron microscopy (TEM). Brunauer–Emmett–Teller (BET) surface area measurements assigned mesoporous structure and an average pore diameter of 14.342 nm for the as-prepared NPs. The microbial resistance against common antimicrobial agents and the development of new microbial strains are urging factors for finding alternate potent antimicrobial agents. The as-prepared CSNPs may conquer plant diseases, as they exhibited antifungal efficiency against eleven phytopathogenic fungal isolates with Fusarium oxysporum growth reduction reaching 52.63%. Additionally, these NPs strongly inhibited the cellulase enzyme activity produced by Fusarium camptoceras by 51.54% at 30 °C and also inhibited the enzyme activity produced by Trichoderma harzianum by 55.4% at 40 °C leading to promising usefulness of the as prepared CSNPs in improving the quality and quantity of agricultural crops and protecting them from several plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Ravi, C.V.V.M. Gopi, H.J. Kim, Dalton Trans. 45, 12362 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Q. Zhou, L. Liu, Z. Huang, L. Yi, X. Wanga, G. Cao, J. Mater. Chem. A 4, 5505 (2016)

    Article  CAS  Google Scholar 

  3. H. Li, F. Xie, W. Li, B.D. Fahlman, M. Chena, W. Li, RSC Adv. 6, 105222 (2016)

    Article  CAS  Google Scholar 

  4. J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An, D. Zhou, H. Lin, M.K.H. Leung, S. Yang, Energy Environ. Sci. 10, 593 (2017)

    Article  CAS  Google Scholar 

  5. N.R. Kim, J. Choi, H.J. Yoon, M.E. Lee, S.U. Son, H.J. Jin, Y.S. Yun, ACS Sustain. Chem. Eng. 5, 9802 (2017)

    Article  CAS  Google Scholar 

  6. J. Li, M. Bloemen, J. Parisi, J. Kolny-Olesiak, ACS Appl. Mater Interfaces 6, 20535 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. D.H. Ha, A.H. Caldwell, M.J. Ward, S. Honrao, K. Mathew, R. Hovden, M.K.A. Koker, D.A. Muller, R.G. Hennig, R.D. Robinson, Nano Lett. 14, 7090 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. P. Roy, S.K. Srivastava, Mater Lett. 61, 1693 (2007)

    Article  CAS  Google Scholar 

  9. F. Li, J. Wu, Q. Qin, Z. Li, X. Huang, Powder Technol. 198, 267 (2010)

    Article  CAS  Google Scholar 

  10. C. Tan, Y. Zhu, R. Lu, P. Xue, C. Bao, X. Liu, Z. Fei, Y. Zha, Mater Chem. Phys. 91, 44 (2005)

    Article  CAS  Google Scholar 

  11. Q. Lu, F. Gao, D. Zhao, Nano Lett. 2, 725 (2002)

    Article  CAS  Google Scholar 

  12. E. Esmaeili, M. Sabet, M. Salavati-Niasari, Z. Zarghami, S. Bagher, J. Clust. Sci. 27, 351 (2016)

    Article  CAS  Google Scholar 

  13. G. Borkow, J. Gabbay, Curr. Chem. Biol. 3, 272 (2009)

    CAS  Google Scholar 

  14. M. McNeil, A.G. Darvill, S.C. Fry, P. Albersheim, Ann. Rev. Biochem. 53, 625 (1984)

    Article  CAS  PubMed  Google Scholar 

  15. A. De lasHeras, B. Patino, M.L. Podada, M.J. Martinez, C. Vazquez, M.T.G. Jean, J. Appl. Microbiol. 94, 856 (2003)

    Article  Google Scholar 

  16. M.F. Machinandiarena, E.A. Wolski, V. Barrera, G.R. Daleo, A.B. Andreu, Mycopathologia 159, 441 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. S. Stølen, F. Grønvold, E.F. Westrum, J. Chem. Thermodyn. 22, 1035 (1990)

    Article  Google Scholar 

  18. M.M. Kazinets, Sov. Phys. 14, 599 (1970)

    Google Scholar 

  19. A. Sharma, P. Piplani, Chem. Biol. Drug Des. 90, 926 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. T.M. Salama, A.H. Ahmed, Z.M. El-Bahy, Microporous Mesoporous Mater. 89, 251 (2006)

    Article  CAS  Google Scholar 

  21. L. He, Y. Liu, A. Mustapha, M. Lin, Microbiol. Res. 166, 207 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. C.O. Dimkpa, J.E. McLean, D.W. Britt, A.J. Anderson, Biometals 26, 913 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. S.K. Niture, A. Pant, World J. Microbiol. Biotechnol. 23, 1169 (2007)

    Article  CAS  Google Scholar 

  24. V.H. Sunitha, N.D. Devi, C. Srinivas, World J. Agri. Sci. 9, 1 (2013)

    CAS  Google Scholar 

  25. W. Geary, Coord. Chem. Rev. 7, 81 (1971)

    Article  CAS  Google Scholar 

  26. A. Tarushi, C.P. Raptopoulou, V. Psycharis, D.P. Kessissoglou, A.N. Papadopoulos, G. Psomas, J. Inorg. Biochem. 176, 100 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. A. Tarushi, S. Perontsis, A.G. Hatzidimitriou, A.N. Papadopoulos, D.P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 149, 68 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. K. Kotloff, J. Winickoff, B. Ivanoff, J.D. Clemens, D. Swerdlow, P. Sansonetti, G. Adak, M. Levine, Bull. World Health Organ. 77, 651 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Liu, L. Xu, T. Zhang, G. Ren, Z. Yang, Toxicology 267, 172 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. V. Petranovskii, L. Panina, E. Bogomolova, G. Belostotskaya, Proceedings SPIE. 5218, 244 (2003)

  31. Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Coll. Surf. A: Physiochem. Eng. Aspects 284, 364 (2006)

    Article  CAS  Google Scholar 

  32. R. Usha, E. Prabu, M. Palaniswamy, C.K. Venil, R. Rajendran, Global J. Biotechnol. Biochem. 5, 153 (2010)

    CAS  Google Scholar 

  33. J.L. Watson, T. Fang, C.O. Dimkpa, D.W. Britt, J.E. McLean, A. Jacobson, A.J. Anderson, Biometals 28, 101 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. G.N. Agrios, Significance of plant diseases, in Plant Pathology, 4th edn., Academic Press, San Diego, 1997

    Google Scholar 

  35. N. Sonker, A.K. Pandey, P. Singh, J. Sci. Food Agric. 95, 1932 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. P. Battilani, A. Pietri, T. Bertuzzi, L. Languasco, P. Giorni, Z. Kozakiewicz, J. Food Prot. 66, 633 (2003)

    Article  PubMed  Google Scholar 

  37. K.G. Sonia, B.S. Chadha, H.S. Saini, Bioresour. Technol. 96, 1561 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. I. Persson, F. Tjerneld, B.B. Hahn-Hagerdal, Process Biochem. 26, 65 (1991)

    Article  CAS  Google Scholar 

  39. K. Kathiresan, K. Saravanakumar, R. Anburaj, V. Gomathi, G. Abirami, S.K. Sahu, S. Anandhan, Int. J. Adv. Biotechnol. Res. 2, 382 (2011)

    Google Scholar 

  40. A. Di Matteo, D. Bonivento, D. Tsernoglou, L. Federici, F. Cervone, Phytochemistry 67, 528 (2006)

    Article  PubMed  CAS  Google Scholar 

  41. F.I. Garcia-Maceira, A. Di Pietro, M.D. Huertas-Gonzalez, M.C. Ruiz-Roldan, M.I. Roncero, Appl. Environ. Microbiol. 67, 2191 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Mater Lett. 71, 114 (2012)

    Article  CAS  Google Scholar 

  43. A. Llorens, E. Lloret, P. Picouet, A. Fernandez, Int. J. Food Microbiol. 158, 113 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. F.A. Schinner, R. Niederbacher, I. Neuwinger, Plant Soil 57, 85 (1980)

    Article  CAS  Google Scholar 

  45. G. Geigera, H. Brandl, G. Furrer, R. Schulina, Soil Biol. Biochem. 30, 1537 (1998)

    Article  Google Scholar 

  46. P. Karimi, R.A. Khavari-Nejad, V. Niknam, F. Ghahremaninejad, F. Najafi, Sci. World J. 2012, 615 (2012)

    Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed B. M. Ibrahim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.B.M., Mahmoud, G.AE. Nonstoichiometric Mesoporous Cu1.90S Nanoparticles Hydrothermally Prepared from a Copper Anthranilato Complex Inhibit Cellulases of Phytopathogenic Fungi. J Inorg Organomet Polym 29, 1280–1287 (2019). https://doi.org/10.1007/s10904-019-01091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01091-6

Keywords

Navigation