Skip to main content
Log in

Anionic Nylon 612/TiO2 Composite Materials: Synthesis, Characterization and Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two novel series of composites have synthesized in situ by simultaneous anionic ring-opening copolymerization-rotational molding fast environment-friendly process using ε-caprolactam (CL) with laurolactam (LL) as starting comonomers and TiO2 as filler. The type of filler (with surface treated or not) differentiates the two series. Aminopropyl triethoxysilane (APTES) coupling agent was used. By adjusting the TiO2 in the range 0.0–8.0 wt.% in the feed monomers mixture, various composites were obtained. The characterization of samples was performed, in the context of filler type and content variation by combined use of ATR–FTIR spectroscopy, X-ray spectroscopy, DSC, TGA/DTG, SEM and mechanical measurements. In addition, degree of conversion, intrinsic viscosity and water absorption were evaluated. Introduction of the long methylene sequences through the second monomer into the nylon 6 chains improved especially the water uptake of the composites. The melting temperature (Tm), crystallization temperature (Tc), degree of crystallinity (αDSC) and the interface interactions between filler and nylon 612 matrix prove to be improved by treatment of filler surface. The same trend was recorded for tensile strength, tensile modulus, elongation at break and impact strength. The results related to composites were compared with those obtained for neat nylon 612 copolymer synthesized in the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. L. Krištofič, P. Alexy, N. Karabcová, Optimisation of properties of ternary copolyamides based on ε–caprolactam. Fibres Text. East. Eur. 12, 12–16 (2004)

    Google Scholar 

  2. B. Wunderlich, Thermal properties of aliphatic nylons and their link to crystal structure and molecular motion. J. Therm. Anal. Calorim. 93, 7–17 (2008)

    Article  CAS  Google Scholar 

  3. G. Rusu, E. Rusu, Evaluation of thermal and dielectric behavior of some anionic nylon 612 copolymers. Mater. Des. 31, 4601–4610 (2010)

    Article  CAS  Google Scholar 

  4. F. Auriemma, V. Petraccone, L. Parravicini, P. Corradini, Mesomorphic form (β) of nylon 6. Macromolecules 30, 7554–7559 (1997)

    Article  CAS  Google Scholar 

  5. X. Cui, D. Yan, Preparation, characterization and crystalline transitions of odd–even polyamides 11, 12 and 11, 10. Eur. Polym. J. 41, 863–870 (2005)

    Article  CAS  Google Scholar 

  6. E. Carone Jr, U. Kopcak, M.C. Goncalves, S.P. Nunes, In situ compatibilization of polyamide 6/natural rubber blends with maleic anhydride. Polymer 41, 5929–5935 (2000)

    Article  CAS  Google Scholar 

  7. K. Udipi, S.R. Dave, R.L. Kruse, L.R. Stebbins, Polyamides from lactams via anionic ring–opening polymerization: 1. Chemistry and some recent findings. Polymer 38, 927–938 (1997)

    Article  CAS  Google Scholar 

  8. L. Ricco, S. Russo, G. Orefice, F. Riva, Caprolactam–laurolactam copolymers: fast activated anionic synthesis, thermal properties and structural investigations. Macromol. Chem. Phys. 202, 2114–2121 (2001)

    Article  CAS  Google Scholar 

  9. J. Budin, J. Brozek, J. Roda, Polymerization of lactams, 96. anionic copolymerization of ε–caprolactam with ω–laurolactam. Polymer 47, 140–147 (2006)

    Article  CAS  Google Scholar 

  10. G. Rusu, K. Ueda, E. Rusu, M. Rusu, Polyamides from lactams by centrifugal molding via anionic ring–opening polymerization. Polymer 42, 5669–5678 (2001)

    Article  CAS  Google Scholar 

  11. G. Rusu, E. Rusu, Caprolactam–Laurolactam (Nylon 6/12) copolymers: synthesis and characterization. High Perform Polym. 16, 569–584 (2004)

    Article  CAS  Google Scholar 

  12. I. Prokopová, J. Kondelíková, Z. Nejezchlebová, J. Bíalá, J. Králíaček, Die Polymerisation von Lactamen, 66. Die cyclischen Dimeren von 8–Octanlactam und 6–Caprolactam und deren Einfluß auf die Autopolymerisation beider Lactame. Angew. Makromol. Chem. 117, 85–94 (1983)

    Article  Google Scholar 

  13. A.H. Kehayoglou, I. Arvanitoyannis, Copolymers of anionic polymerization of octanelactam with laurolactam (nylon–8/12 copolymers). I. Preparation and general properties. Eur. Polym. J. 26, 261–266 (1990)

    Article  CAS  Google Scholar 

  14. I. Arvanitoyannis, A.H. Kehayoglou, Copolymers of anionic polymerization of octanelactam with laurolactam. II. Kinetics of isothermal crystallization. Angew. Makromol. Chem. 204, 91–100 (1993)

    Article  CAS  Google Scholar 

  15. G. Rusu, E. Rusu, L. Leontie, G.I. Rusu, Electrical DC conduction mechanism in some newly synthesized nylon 6/12 copolymers. J. Polym. Sci. Part B 45, 94–799 (2007)

    Article  Google Scholar 

  16. S. Dasgupta, W.B. Hammond, W.A. Goddhard, Crystal structures and properties of nylon polymers from theory. J. Am. Chem. Soc. 118, 12291–12301 (1996)

    Article  CAS  Google Scholar 

  17. E.N. Cabrera Álvarez, L.F. Ramos de Valle, F. J. Rodríguez González, F. Soriano–Corral, R.E. Díaz De León, Influence of laurolactam content on the clay intercalation of polyamide 6,12/clay nanocomposites synthesized by open ring anionic polymerization. J. Nanomater. 2012, 1–7 (2012)

    Article  Google Scholar 

  18. Y. Zhang, G. Hu, B. Wang, Characterization of nylon 6/11/montmorillonite nano–composites prepared by in situ copolymerization. e–Polymers 11, 535–542 (2013)

    Google Scholar 

  19. S.M. Ali Dadfar, I. Alemzadeh, S.M. Reza Dadfar, M. Vosoughi, Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Mater. Des. 32, 1806–1813 (2011)

    Article  Google Scholar 

  20. G. Albayrak, I. Aydin, Nanocomposites prepared by solution blending: microstructure and mechanical properties. J. Macromol. Sci. Phys. 47, 260–267 (2008)

    Article  Google Scholar 

  21. A. Makhlouf, H. Satha, D. Frihi, S. Gherib, R. Seguela, Optimization of the crystallinity of polypropylene/submicronic–talc composites: the role of filler ratio and cooling rate, eXPRESS. Polym. Lett. 10, 237–247 (2016)

    Article  CAS  Google Scholar 

  22. J. Horský, J. Kolařík, L. Fambri, Gradient composites of alkaline poly(6–hexanelactam) with graphite: One–step synthesis, structure, and mechanical properties. Macromol. Mater. Eng. 286, 216–224 (2001)

    Article  Google Scholar 

  23. M. Moniruzzaman, J. Chattopadhyay, W.E. Billups, K.I. Winey, Tuning the mechanical properties of SWNT/Nylon 6,10 composites with flexible spacers at the interface. Nano Lett. 7, 1178–1185 (2007)

    Article  CAS  Google Scholar 

  24. L.–Y. Zheng, K.–T. Lau, L.–X. Zhao, Y.–Q. Zhang, D. Hui, Mechanical and thermal properties of nano–Al2O3/nylon 6 composites. Chem. Eng. Comm. 197, 343–351 (2010)

    Article  CAS  Google Scholar 

  25. G. Rusu, E. Rusu, Anionic nylon 6/zinc composite materials: evaluation of thermal and mechanical behavior. Int. J. Polym. Anal. Charact. 15, 509–523 (2010)

    Article  CAS  Google Scholar 

  26. G. Rusu, E. Rusu, Nylon 6/SiO2 nanocomposites synthesized by in situ anionic polymerization. High Perform. Polym. 18, 355–375 (2006)

    Article  CAS  Google Scholar 

  27. K.S. Rhutesh, D.R. Paul, Nylon 6 nanocomposites prepared by a melt mixing masterbatch process. Polymer 45, 2991–3000 (2004)

    Article  Google Scholar 

  28. G. Rusu, E. Rusu, Nylon 6/TiO2 composites by in situ anionic ring–opening polymerization of ε–caprolactam: synthesis, characterization, and properties. Int. J. Polym. Anal. Charact.16, 561–583 (2011)

    Article  CAS  Google Scholar 

  29. A. Luisier, P.–E. Bourban, J.–A. E. Månson, Initiation mechanisms of an anionic ring–opening polymerization of lactam–12. J. Polym. Sci. Part A 40, 3406–3415 (2002)

    Article  CAS  Google Scholar 

  30. G. Rusu, M. Rusu, E. Rusu, A. Stoleriu, C.–A. Teacǎ, Direct centrifugal molding of nylon 6–based products from ε–caprolactam. Polym. Plast. Technol. Eng. 39, 233–247 (2000)

    Article  CAS  Google Scholar 

  31. C.W. Macosko, RIM Fundamentals of Reaction Injection Molding. (Hanser Publishers, Munich, 1989), p. 182

    Google Scholar 

  32. E. Harkin–Jones, R.J. Crawford, Mechanical properties of rotationally molded nyrim. Polym. Eng. Sci. 36, 615–625 (1996)

    Article  Google Scholar 

  33. K. Kircher, Chemical Re Action Plastics Processing. (Hanser Publishers, Munich, 1989) p. 78

    Google Scholar 

  34. G. Rusu, E. Rusu, Biodegradable anionic poly(esteramide)s. Physico–mechanical properties. J. Optoelectron. Adv. Mater. 9, 958–964 (2007)

    CAS  Google Scholar 

  35. G. Rusu, Compozite poliamidă 6/carbonat de calciu obţinute prin formare rotaţională via polimerizarea anionică a ε–caprolactamei. Mater. Plast. 42, 233–238 (2005) (in Romanian)

    CAS  Google Scholar 

  36. G. Rusu, E. Rusu, In situ nylon 6/graphite composites. Physico–mechanical properties. J. Optoelectron. Adv. Mater. 9, 2102–2109 (2007)

    CAS  Google Scholar 

  37. T.D. Fornes, D.R. Paul, Structure and properties of nanocomposites based on nylon–11 and –12 compared with those based on nylon–6. Macromolecules 37, 7698–7709 (2004)

    Article  CAS  Google Scholar 

  38. G. Rusu, E. Rusu, Nylon 6/copper composites by in situ polymerization. J. Optoelectron. Adv. Mater. 11, 673–680 (2009)

    CAS  Google Scholar 

  39. H.C. Choi, H.–J. Ahn, Y.M. Jung, M.K. Lee, H.J. Shin, S.B. Kim, Y.–E. Sung, Characterization of the structures of size–selected TiO2 nanoparticles using X–ray absorption spectroscopy. Appl. Spectrosc. 58, 598–602 (2004)

    Article  CAS  Google Scholar 

  40. G. Rusu, E. Rusu, Anionic nylon 6/TiO2 composite materials: effects of TiO2 filler on the thermal and mechanical behavior of the composites. Polym. Compos. 33, 1557–1569 (2012)

    Article  CAS  Google Scholar 

  41. Z. Xiao, P. Guo, C. Wang, Synthesis and characterization of TiO2/fluorocopolymer nanocomposites with core–shell structure. Colloid Polym. Sci. 293, 307–312 (2015)

    Article  CAS  Google Scholar 

  42. G. Bogusława, M. El Fray, E. Wiśniewska, Surface modification of TiO2 and SiO2 nanoparticles for application in polymeric nanocomposites. Chemik, 65, 621–626 (2011)

    Google Scholar 

  43. Y. Zhao, B. Wang, W. Chen, A. Li, G. Zheng, C. Liu, J. Chen, C. Shen, Effects of surface modification with 3–aminopropyltriethoxysilane on structure and mechanical property of multiwalled carbon nanotube/polycarbonate composites. Polym. Compos. 37, 1914–1923 (2016)

    Article  CAS  Google Scholar 

  44. J.D. Ambrósio, C.V. Morisco Balarim, and G. Baldi de Carvalho, Preparation, characterization, and mechanical/tribological properties of polyamide11/titanium dioxide nanocomposites. Polym. Compos. 37, 1415–1424 (2016)

    Article  Google Scholar 

  45. Q. Chen, N.L. Yakovlev, Adsorption and interaction of organosilanes on TiO2 nanoparticles. Appl. Surf. Sci. 257, 1395–1400 (2010)

    Article  CAS  Google Scholar 

  46. T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, IR– analysis of H–bonded H2O on the pure TiO2 surface. J. Mol. Struct. 700, 175–181 (2004)

    Article  CAS  Google Scholar 

  47. J. Zhao, M. Milanova, M.C. Marijn, G. Warmoeskerken, V. Dutschk, Surface modification of TiO2 nanoparticles with silane coupling agents. Colloid Surf. A 413, 273–279 (2012)

    Article  CAS  Google Scholar 

  48. K. Prabakaran, S. Mohanty, S.K. Nayak, Influence of surface modified TiO2 nanoparticles on dielectric properties of PVdF–HFP nanocomposites. J. Mater. Sci. 25, 4590–4602 (2014)

    CAS  Google Scholar 

  49. E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface modification with silane coupling agent on suppressing the photo–catalytic activity of fine TiO2 particles as inorganic UV filter. Appl. Surf. Sci. 254, 563–569 (2007)

    Article  CAS  Google Scholar 

  50. L. Jun, J.A. Siddiqui, R.M. Ottenbrite, Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polym. Adv. Technol. 12, 285–292 (2001)

    Google Scholar 

  51. L.S. Loo, K.K. Gleason, Insights into Structure and Mechanical Behavior of α and γ Crystal Forms of Nylon-6 at Low Strain by Infrared Studies. Macromolecules 36, 6114–6126 (2003)

    Article  CAS  Google Scholar 

  52. H. Torii, T. Tatsumi, T. Kanazava, M. Tasumi, Effects of intermolecular hydrogen bonding interactions on the amide I mode of N–Methylacetamide: matrix isolation infrared studies and ab initio molecular orbital calculations. J. Phys. Chem. B 102, 309–314 (1998)

    Article  CAS  Google Scholar 

  53. S. Aharoni, n–Nylons. (Wiley, New York, 1997) p. 305

    Google Scholar 

  54. F. Chouli, I. Radja, E. Morallon, A. Benyoucef, A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Compos. (2015). doi:10.1002/pc.23837

    Google Scholar 

  55. I. Radja, H. Djelad, E. Morallon, A. Benyoucef, Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth. Met. 202, 25–32 (2015)

    Article  CAS  Google Scholar 

  56. S. Benykhlef, A Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid. Polym. Sci. (2015), doi:10.1007/s00396-016-3955-y

    Google Scholar 

  57. J.–L. Yeh, J.–F. Kuo, C.–Y. Chen, Morphology and properties of nylon 6–polyoxypropylene–nylon 6 block copolymers. Phys. Mater. Chem. 37, 161–169 (1994)

    Article  CAS  Google Scholar 

  58. P.D. Frayer, J.L. Koenig, J.B. Lando, Infrared studies of chain folding in polymers. X. polycaprolactam. J. Macromol. Sci. Phys. 6. 129–149 (1972)

    Article  CAS  Google Scholar 

  59. G.V. Salmoria, J.L. Leite, R.A. Paggi, The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering. Polym. Test 28, 746–751 (2009)

    Article  CAS  Google Scholar 

  60. V. Miri, O. Persyn, J.–M. Lefebvre, R. Seguela, Effect of water absorption on the plastic deformation behavior of nylon 6. Eur. Polym. J. 45, 757–762 (2009)

    Article  CAS  Google Scholar 

  61. D. Feldman, A. Barbalata, Synthetic Polymers, Technology, Properties, Applications. (Chapman & Hall, New York, 1996) p. 228

    Google Scholar 

  62. X. Liu, Q. Wu, L.A. Berglund, H. Lindberg, J. Fan, Z. Qi, Polyamide 6/clay nanocomposites using a cointercalation organophilic clay via melt compounding. J. Appl. Polym. Sci. 88, 953–958 (2003)

    Article  CAS  Google Scholar 

  63. A. Andrzejewska, A. Krysztafkiewicz, T. Jesionowski, Adsorption of organic dyes on the aminosilane modified TiO2 surface. Dyes Pigment. 62, 121–130 (2004)

    Article  CAS  Google Scholar 

  64. G. Rusu, E. Rusu, Evaluation of thermal and mechanical behavior of some anionic polyesteramide copolymers. J. Polym. Res. 20, 308–321 (2013)

    Article  Google Scholar 

  65. R. Mateva, K.R. Zhilkova, G. Zamfirova, R. Díaz–Calleja, A. Garcia–Bernabé, Effects of different composition ratio on the dielectric relaxation and dynamic mechanical properties of poly(ω–dodecalactam–co–ε–caprolactam–co–propylene oxide) copolymers. J. Polym. Sci. Part B 48, 2518–2529 (2010)

    Article  CAS  Google Scholar 

  66. D.M. Lincoln, R.A. Vaia, Z.–G. Wang, B.S. Hsiao, Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42, 1621–1631 (2001)

    Article  CAS  Google Scholar 

  67. T. Liu, I.Y. Phang, L.S. Shen, Y. Chow, W.–D. Zhang, Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon–6 composites. Macromolecules 37, 7214–7222 (2004)

    Article  CAS  Google Scholar 

  68. L. Li, G. Yang, Synthesis and characterization of nylon–6/mesoporous silica nanocomposites via in situ synchronous hydrolytic polymerization of tetraethylorthosilicate and ε–caprolactam. J. Appl. Polym. Sci. 120, 1957–1964 (2011)

    Article  CAS  Google Scholar 

  69. Y. Li, G. Yang, An unusual morphology and crystallization behavior in situ formed polyphenylene oxide/polyamide 6 blends. J. Mater. Sci. 45, 987–992 (2010)

    Article  CAS  Google Scholar 

  70. D. Yan, T. Xie, G. Yang, In situ synthesis of polyamide 6/MWNTs nanocomposites by anionic ring opening polymerization. J. Appl. Polym. Sci. 111, 1278–1285 (2009)

    Article  CAS  Google Scholar 

  71. A. Liu, T. Xie, G. Yang, Comparison of polyamide–6 nanocomposites based on pristine and organic montmorillonite obtained via anionic ring–opening polymerization. Macromol. Chem. Phys. 207, 1174–1181 (2006)

    Article  CAS  Google Scholar 

  72. T. Kyu, Z. L. Zhou, G. C. Zhu, Y. Tajuddin, S. Qutubuddin, Novel filled polymer composites prepared from in situ polymerization via a colloidal approach: I. Kaolin/nylon–6 in situ composites. J. Polym. Sci. Part B 34, 1761–1768 (1996)

    Article  CAS  Google Scholar 

  73. E. Taghizadeh, G. Naderi, M.R. Nouri, Effects of organoclay on the mechanical properties and microstructure of PA6/ECO blend. Polym. Test 30, 327–334 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rusu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusu, G., Rusu, E. & Zaltariov, M.F. Anionic Nylon 612/TiO2 Composite Materials: Synthesis, Characterization and Properties. J Inorg Organomet Polym 27, 225–248 (2017). https://doi.org/10.1007/s10904-016-0466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0466-8

Keywords

Navigation