Skip to main content
Log in

RETRACTED ARTICLE: The Effects of Percent and Position of Nitrogen Atoms on Electronic and Thermoelectric Properties of Graphene Nanoribbons

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

This article was retracted on 16 June 2023

This article has been updated

Abstract

Graphene-based nanostructures exhibit electronic properties that are not present in extended graphene. Graphene nanoribbons (GNRs) are expected to display extraordinary properties in the form of nanostructures. The effect of percent and position of nitrogen atoms on electronic and thermoelectric properties of a GNR is studied using Landauer approach and density functional theory. For this purpose the density of States, electronic current and thermal current have been calculated. Moreover, an analytical model for the thermo-conductance of the nanosized junction in two-dimensional graphene nanosystems developed. The results show that increasing of nitrogen atoms, increases the splitting of p-orbitals as well as band gap at Fermi level. Also the presence of nitrogen impurities is shown to yield resonant backscattering, whose features are strongly dependent on the position of the dopants. It is demonstrated that increasing N concentration decrease the thermal conductivity due to multi-scattering. In addition I–V characteristics exhibit robust nonlinear behaviors, which are strongly dependent on the position and theconcentration of the nitrogen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. S. Guo, S. Dong, E. Wang, ACS Nano 4, 547–555 (2009)

    Article  Google Scholar 

  2. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 8, 2277–2282 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Z. Wu, W. Ren, L. Xu, F. Li, H. Cheng, ACS Nano 5, 5463–5471 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. J. Han, L.L. Zhang, S. Lee, J. Oh, K. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, S. Park, ACS Nano 7, 19–26 (2012)

    Article  PubMed  Google Scholar 

  6. L. Wang, K. Lee, Y. Sun, M. Lucking, Z. Chen, J.J. Zhao, S.B. Zhang, ACS Nano 3, 2995–3000 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. R. Sordan, F. Traversi, V. Russo, Appl. Phys. Lett. 94, 073305–073307 (2009)

    Article  Google Scholar 

  8. H.T. Liu, Y.Q. Liu, D.B. Zhu, J. Mater. Chem. 21, 3335–3345 (2011)

    Article  CAS  Google Scholar 

  9. Y.A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, A. Eckmann, C. Casiraghi, K.S. Novoselov, R. Saito, M.S. Dresselhaus, ACS Nano 6, 6293–6300 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. X.R. Wang, X.L. Li, L. Zhang, Y. Yoon, P.K. Weber, H.L. Wang, J. Guo, H.J. Dai, Science 324, 768–771 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Z.W. Liu, F. Peng, H.J. Wang, H. Yu, W.X. Zheng, J. Yang, Angew. Chem. Int. Ed. 14, 3315–3319 (2011)

    Article  Google Scholar 

  12. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, Adv. Mater. 3, 4726–4730 (2009)

    Google Scholar 

  13. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas et al., Nat. Mater. 9, 430–435 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Tomofumi Tada, Kazunari Yoshizawa, J. Phys. Chem. B 107, 8789–8793 (2003)

    Article  CAS  Google Scholar 

  15. Wu Ting et al., Appl. Phys. Lett. 100, 052112 (2012)

    Article  Google Scholar 

  16. Anup Pramanik, Sunandan Sarkar, Pranab Sarkar, J. Phys. Chem. C 34, 18064–18069 (2012)

    Article  Google Scholar 

  17. P. Srivastava, A.K. Shrivastava, Appl. Nanosci. 4, 461–467 (2014)

    Article  Google Scholar 

  18. K. Schwarz, P. Blaha, Comput. Mater. Sci. 28, 259–273 (2003)

    Article  CAS  Google Scholar 

  19. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399–415 (1990)

    Article  CAS  Google Scholar 

  20. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  21. A. Salar Elahi et al., J. Fusion Energy 34(3), 449–455 (2015)

    Article  Google Scholar 

  22. A. Salar Elahi et al., J. Cryst. Growth 415(1), 166–169 (2015)

    Google Scholar 

  23. A. Salar Elahi et al., Mater. Manuf. Process. 30(11), 1348–1353 (2015)

    Article  Google Scholar 

  24. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(4), 942–947 (2015)

    Article  Google Scholar 

  25. A. Salar Elahi et al., Fusion Eng. Des. 94, 1–6 (2015)

    Article  Google Scholar 

  26. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(5), 1040–1043 (2015)

    Article  Google Scholar 

  27. A. Salar Elahi et al., J. Alloy. Compd. 644, 97–100 (2015)

    Article  Google Scholar 

  28. A. Salar Elahi et al., Mol. Cryst. Liq. Cryst. 629(1), 158–164 (2016)

    Article  Google Scholar 

  29. A. Salar Elahi et al., Radiat. Eff. Defect. Sol. 170(6), 541–547 (2015)

    Article  Google Scholar 

  30. A. Salar Elahi et al., J. Alloy. Compd. 648, 1104–1108 (2015)

    Article  Google Scholar 

  31. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1470–1477 (2015)

    Article  Google Scholar 

  32. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 25(6), 1486–1489 (2015)

    Article  Google Scholar 

  33. A. Salar Elahi et al., Int. J. Mater. Prod. Technol. 52(3–4), 353–361 (2016)

    Article  Google Scholar 

  34. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 254–258 (2016)

    Article  Google Scholar 

  35. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(1), 270–275 (2016)

    Article  Google Scholar 

  36. A. Salar Elahi et al., J. Crys. Growth 438, 70–75 (2016)

    Article  Google Scholar 

  37. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 773–779 (2016)

    Article  CAS  Google Scholar 

  38. A. Salar Elahi et al., J. Inorg. Organomet. Polym. Mater. 26(4), 889–894 (2016)

    Article  Google Scholar 

  39. A. Salar Elahi et al., J. Cryst. Growth 447, 62–66 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salar Elahi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A., Ghoranneviss, M., Gholami, M. et al. RETRACTED ARTICLE: The Effects of Percent and Position of Nitrogen Atoms on Electronic and Thermoelectric Properties of Graphene Nanoribbons. J Inorg Organomet Polym 26, 1095–1100 (2016). https://doi.org/10.1007/s10904-016-0430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0430-7

Keywords

Navigation