Skip to main content
Log in

RETRACTED ARTICLE: Increase of the Surface Mobility of Carbon Molecular Crystals (CMCs) Using the PECVD Technique

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

This article was retracted on 12 July 2023

This article has been updated

Abstract

Large-area boron doped multi-layer carbon is synthesized by the plasma enhanced chemical vapour deposition (PECVD) using boron oxide powder and ethanol vapor. We have reviewed the carbon molecular crystals preparation by the PECVD method. The three main synthesis methods of carbon nanocrystals (CNCs) are the arc discharge, the laser ablation and the chemical vapour deposition with a special regard to the later one. By two different methods, ZnO layers were coated on the tubes. RF sputtering was one of the ways to directly deposit ZnO thin layer on the MWCNCs. On the other hand, we used thermally physical vapour deposition for making thin Zn film to oxidize it later. Scanning electron microscopy and also Raman spectroscopy measurements of the prepared samples confirmed the presence of ZnO nanolayers on the CNC bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Matter. (Weinheim, Ger.) 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature (London) 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  3. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes; Synthesis, Structure, Properties, and Applications (Springer, New York, 2001)

    Google Scholar 

  4. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  CAS  Google Scholar 

  5. I.C. Chen, L.H. Chen, X.R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102–153104 (2006)

    Article  Google Scholar 

  6. S.S. Wong, A.T. Woolley, E. Joselevich, C.M. Lieber, Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999)

    Article  CAS  Google Scholar 

  7. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  CAS  Google Scholar 

  8. Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308–3310 (1997)

    Article  CAS  Google Scholar 

  9. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1990)

    Article  Google Scholar 

  10. C.S. Huang, C.Y. Yeh, Y.H. Chang, Y.M. Hsieh, C.Y. Ku, Q.T. Lai, Field emission properties of CNT–ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)

    Article  CAS  Google Scholar 

  11. W.A. de Heer, A. Châtelain, D. Ugarte, Science “a carbon nanotube field-emission electron source”. Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  12. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tománek, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube. Nature (London) 420, 393–395 (2002)

    Article  PubMed  Google Scholar 

  14. J. Jiao, L.F. Dong, D.W. Tuggle, C.L. Mosher, S. Foxley, J. Tawdekar, Fabrication and characterization of carbon nanotube field emitters. Mater. Res. Soc. Symp. Proc. 706, 113–117 (2002)

    CAS  Google Scholar 

  15. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75, 873–875 (1999)

    Article  CAS  Google Scholar 

  16. J.M. Bonard, J.P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A Mater. Sci. Process. 69, 245–254 (1999)

    Article  CAS  Google Scholar 

  17. M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Raman spectroscopy and field emission properties of CVD-grown carbon nanotube films. Appl. Phys. A 73, 409–418 (2001)

    Article  CAS  Google Scholar 

  18. J.M. Green, L. Dong, T. Gutu, J. Jiao, J.F. Conley, Y. Ono, ZnO-nanoparticle-coated carbon nanotubes demonstrating enhanced electron field-emission properties. J. Appl. Phys. 99, 094308–094311 (2006)

    Article  Google Scholar 

  19. H. Kim, W. Sigmund, Zinc oxide nanowires on carbon nanotubes. Appl. Phys. Lett. 81, 2085–2087 (2002)

    Article  CAS  Google Scholar 

  20. L. Jiang, L. Gao, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys. 91, 313–316 (2005)

    Article  CAS  Google Scholar 

  21. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16, R829 (2004)

    Article  CAS  Google Scholar 

  22. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Superlattice Microstruct. 34, 3–32 (2003)

    Article  CAS  Google Scholar 

  23. W.Z. Li, H. Zhang, C.Y. Wang, Y. Zhang, L.W. Xu, K. Zhu, S.S. Xie, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 70, 2684–2686 (1997)

    Article  CAS  Google Scholar 

  24. A. Hirsch, Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002)

    Article  CAS  Google Scholar 

  25. Y. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T.S. Wee, J.T.L. Thong, C.H. Sow, Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv. Mater. 18, 587–592 (2006)

    Article  CAS  Google Scholar 

  26. P.H. Tan, S.L. Zhang, K.T. Yue, F.M. Huang, Z.J. Shi, X.H. Zhou, Z.N. Gu, Comparative Raman study of carbon nanotubes prepared by D.C. arc discharge and catalytic methods. J. Raman Spectrosc. 28, 369–372 (1997)

    Article  CAS  Google Scholar 

  27. C.F. Chen, C.L. Tsai, C.L. Lin, The characterization of boron-doped carbon nanotube arrays. Diam. Relat. Mater. 12, 1500–1504 (2003)

    Article  CAS  Google Scholar 

  28. L. Velantini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Effect of catalyst layer thickness and Ar dilution on the plasma deposition of multi-walled carbon nanotubes. Diam. Relat. Mater. 12, 821–826 (2003)

    Article  Google Scholar 

  29. X.L. Li, C. Li, Y. Zhang, D.P. Chu, W.I. Milne, H.J. Fan, Atomic layer deposition of ZnO on multi-walled carbon nanotubes and its use for synthesis of CNT–ZnO heterostructures. Nanoscale Res. Lett. 5, 1836–1840 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T.C. Damen, S.P.S. Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142, 570–574 (1966)

    Article  CAS  Google Scholar 

  31. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 82, 2023–2025 (2003)

    Article  CAS  Google Scholar 

  32. C. Geng, Y. Jiang, Y. Yao, X. Meng, J.A. Zapien, C.S. Lee, Y. Lifshitz, S.T. Lee, Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv. Funct. Mater. 14, 589–594 (2004)

    Article  CAS  Google Scholar 

  33. Y. Du, M.S. Zhang, J. Hong, Y. Shen, Q. Chen, Z. Yin, Structural and optical properties of nanophase zinc oxide. Appl. Phys. A Matter. Sci. Process. 76, 171–176 (2003)

    Article  CAS  Google Scholar 

  34. D. Temple, C.A. Ball, W.D. Palmer, L.N. Yadon, D. Vellenga, J. Mancusi, G.E. McGuire, H.F. Gray, Fabrication of column-based silicon field emitter arrays for enhanced performance and yield. J. Vac. Sci. Technol. B 13, 150–157 (1995)

    Article  CAS  Google Scholar 

  35. M. Sveningsson, R.E. Morjan, O.A. Nerushev, E.B. Campbell Eleanor, D. Malsch, J.A. Schaefer, Highly efficient electron field emission from decorated multiwalled carbon nanotube films”. Appl. Phys. Lett. 85, 4487–4489 (2004)

    Article  CAS  Google Scholar 

  36. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648–3650 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salar Elahi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salar Elahi, A., Ghoranneviss, M. RETRACTED ARTICLE: Increase of the Surface Mobility of Carbon Molecular Crystals (CMCs) Using the PECVD Technique. J Inorg Organomet Polym 26, 773–779 (2016). https://doi.org/10.1007/s10904-016-0368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0368-9

Keywords

Navigation