Skip to main content

Advertisement

Log in

Mn2+ Doped NiS (Mn x Ni1−x S: x = 0.0, 0.3 and 0.5) Nanocrystals: Structural, Morphological, Opto-magnetic and Photocatalytic Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

To reduce the synthesis time, energy consumption, low cost, Mn2+-doped NiS (Mn x Ni1−x S: x = 0.0, 0.3 and 0.5) nano-photocatalysts were successfully synthesized by a facile, one-pot, microwave combustion method (MCM) within 10 min. In this MCM route, microwave heating has produced such functional nano-photocatalysts within few minutes of time. Powder XRD, FT-IR, EDX and SAED results were confirmed the formation of well crystalline single phase of NiS nano-crystals. The as-prepared samples consist of agglomerated particles with nano-crystals like morphologies confirmed by HR-SEM and HR-TEM analysis. The optical band gap energy (E g ) was estimated from UV–Vis DRS and PL study. The value of E g is increased with increasing Mn doping in Mn x Ni1−x S lattice, due to decrease of particle size. VSM results confirmed a weak ferromagnetic behavior of Mn x Ni1−x S nano-crystals and the values of magnetization (Ms) gradually increased with increasing the concentration of Mn2+ cations, due to the higher magnetic moment (5 μB) of Mn2+ ions replaced the lower magnetic moment (2 μB) of Ni2+ ions in NiS. The present study leads to enhance the photocatalytic activity of Mn x Ni1−x S samples, TiO2 catalyst was added. As expected, Mn x Ni1−x S nanoparticles sensitized TiO2 catalyst showed enhanced photocatalytic degradation (PCD) of 4-chlorophenol (4-CP) under visible light irradiation. The alteration of Mn x Ni1−x S–TiO2 nano-composite catalysts shows higher adsorption with synergistic effect and enhances the separation of photogenerated electron–hole pairs, important to higher PCD efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Oveisi, S. Rahighi, X. Jiang, Y. Nemoto, A. Beitollahi, S. Wakatsuki, Y. Yamauchi, Chem. Asian J. 5, 1978–1983 (2010)

    Article  CAS  Google Scholar 

  2. H. Oveisi, N. Suzuki, A. Beitollahi, Y. Yamauchi, J. Sol Gel Sci. Technol. 56, 212–218 (2010)

    Article  CAS  Google Scholar 

  3. W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, Y. Yamauchi, Angew. Chem. Int. Edn. 49, 3956–3959 (2010)

    Article  CAS  Google Scholar 

  4. B.P. Bastakoti, R.R. Salunkhe, J. Ye, Y. Yamauchi, Phys. Chem. Chem. Phys. 16, 10425–10428 (2014)

    Article  CAS  Google Scholar 

  5. B.P. Bastakoti, N.L. Torad, Y. Yamauchi, ACS Appl. Mater. Interfaces 6, 854–860 (2014)

    Article  CAS  Google Scholar 

  6. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897–1899 (2001)

    Article  CAS  Google Scholar 

  7. X. Wang, J. Song, J. Liu, Z.L. Wang, Science 316, 102–105 (2007)

    Article  CAS  Google Scholar 

  8. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66–69 (2001)

    Article  CAS  Google Scholar 

  9. G.S. Tseng, J.C. Ellenbogen, Science 294, 1293–1294 (2001)

    Article  CAS  Google Scholar 

  10. C.J. Barrelet, A.B. Greytak, C.M. Lieber, Nano Lett. 4, 1981–1985 (2004)

    Article  CAS  Google Scholar 

  11. T.S. Arai, I. Senda, Y. Sato, H. Takahashi, K. Shinoda, B. Jeyadevan, Chem. Mater. 20, 1997–2000 (2008)

    Article  CAS  Google Scholar 

  12. P.C. Yeon, G. Trisha, M.Z. Da, K. Ullah, V. Nikam, O.W. Chun, Chin. J. Catal. 34, 711–717 (2013)

    Article  Google Scholar 

  13. X.H. Liao, N.Y. Chen, S. Xu, S.B. Yang, J.J. Zhu, J. Cryst. Growth 252, 593–598 (2003)

    Article  CAS  Google Scholar 

  14. S. Kar, B. Satpati, P.V. Satyam, S. Chaudhuri, J. Phys. Chem. B 109, 19134–19138 (2005)

    Article  CAS  Google Scholar 

  15. H. Pan, C.K. Poh, Y. Zhu, G. Xing, K.C. Chin, Y.P. Feng, J. Lin, C.H. Sow, W. Ji, A.T.S. Wee, J. Phys. Chem. C 112, 11227–11230 (2008)

    Article  CAS  Google Scholar 

  16. N.H. Idris, M.M. Rahman, S.L. Choua, J.Z. Wang, D. Wexler, H.K. Liu, Electrochim. Acta 58, 456–462 (2011)

    Article  CAS  Google Scholar 

  17. A.D. Mani, M. Deepa, P. Ghosal, C. Subrahmanyam, Electrochim. Acta 139, 365–373 (2014)

    Article  CAS  Google Scholar 

  18. J. Wang, S.Y. Chew, D. Wexler, G.X. Wang, S.H. Ng, S. Zhong, H.K. Liu, Electrochem. Commun. 9, 1877 (2007)

    Article  CAS  Google Scholar 

  19. V.I. Klimov, A.A. Mikhailovsky, S. Xu, J.A. Malko, A. Hollingsworth, C.A. Leatherdale, J.H. Eisler, M.G. Bawendi, Science 290, 314 (2000)

    Article  CAS  Google Scholar 

  20. S.C. Han, H.S. Kim, M.S. Song, J.H. Kim, H.J. Ahn, J.Y. Lee, J. Alloys Compd. 351, 273 (2003)

    Article  CAS  Google Scholar 

  21. A. Kudo, M. Sekizawa, Chem. Commun. 15, 1371–1372 (2000)

    Article  Google Scholar 

  22. H. Zhou, B. Lv, D. Wu, Y. Sun, Particuology 10, 783–788 (2012)

    Article  CAS  Google Scholar 

  23. X. Liu, Mater. Sci. Eng. B 119, 19 (2005)

    Article  Google Scholar 

  24. J.Z. Wang, S.L. Chou, S.Y. Chew, J.Z. Sun, M. Forsyth, D.R. MacFarlane, H.K. Liu, Solid State Ionics 179, 2379 (2008)

    Article  CAS  Google Scholar 

  25. S.C. Han, K.W. Kim, H.J. Ahn, J.H. Ahn, J.Y. Lee, J. Alloys Compd. 361, 247 (2003)

    Article  CAS  Google Scholar 

  26. P.S. Khiew, N.M. Huang, S. Radiman, M.S. Ahmad, Mater. Lett. 58, 762–767 (2004)

    Article  CAS  Google Scholar 

  27. A. Sobhani, M.S. Niasari, Superlatt. Microstruct. 59, 1–12 (2013)

    Article  CAS  Google Scholar 

  28. A. Manikandan, S. Arul Antony, J. Supercond. Nov. Magn. 27, 2725–2733 (2014)

    Article  CAS  Google Scholar 

  29. S.A.M. Sanchez, R. Nava, V.H. Morales, Y.J.A. Silva, B. Pawelec, S.M.A. Zahrani, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 38(2013), 11799–11800 (1810)

    Google Scholar 

  30. Y. Wang, J. Wu, J. Zheng, R. Jianga, R. Xu, Catal. Sci. Technol. 2, 581–588 (2012)

    Article  CAS  Google Scholar 

  31. R. Velmurugan, B. Krishnakumar, R. Kumar, M. Swaminathan, Arabian J. Chem. 5, 447–452 (2012)

    Article  CAS  Google Scholar 

  32. A. Vijayabalan, K. Selvam, R. Velmurugan, M. Swaminathan, J. Hazardous Mater. 172, 914–921 (2009)

    Article  CAS  Google Scholar 

  33. L. Wu, J.C. Yu, X. Fu, J. Mol. Catal. A 244, 25–32 (2006)

    Article  CAS  Google Scholar 

  34. Q. Wang, G. Yun, Y. Bai, N. An, Y. Chen, R. Wang, Z. Lei, W. Shangguan, Int. J. Hydrogen Energy (2014) 10.1016/j.ijhydene.2014.04.020

  35. Z. Yu, J. Meng, J. Xiao, Y. Li, Y. Li, Int. J. Hydrogen Energy 39, 15387–15393 (2014)

    Article  CAS  Google Scholar 

  36. L. Zhang, B. Tian, F. Chen, J. Zhang, Int. J. Hydrogen Energy 37, 17060–17067 (2012)

    Article  CAS  Google Scholar 

  37. W. Yao, C. Huang, N. Muradov, A.T. Raissi, Int. J. Hydrogen Energy 36, 4710–4715 (2011)

    Article  CAS  Google Scholar 

  38. M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas, M. Anpo, Catal. Today 120, 133–138 (2007)

    Article  CAS  Google Scholar 

  39. R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011)

    Article  Google Scholar 

  40. D. Gao, J. Zhang, G. Yang, J. Zhang, Z. Shi, J. Qi, Z. Zhang, D. Xue, J. Phys. Chem. C 114, 13477 (2010)

    Article  CAS  Google Scholar 

  41. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Nanotechnology 15, 856 (2004)

    Article  CAS  Google Scholar 

  42. Z. Miroslaw, J. Alloys Compd. 439, 312–320 (2007)

    Article  Google Scholar 

  43. V.V. Kutarov, E. Robens, Y.I. Tarasevich, E.V. Aksenenko, Theor. Exp. Chem. 47, 163–168 (2011)

    Article  CAS  Google Scholar 

  44. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  45. X.Y. Chen, Z.H. Wang, X. Wang, J.X. Wan, J.W. Liu, Y.T. Qian, Chem. Lett. 33, 1294 (2004)

    Article  CAS  Google Scholar 

  46. Y. Hu, J.F. Chen, W.M. Chen, X.H. Lin, X.L. Li, Adv. Mater. 15, 726 (2003)

    Article  CAS  Google Scholar 

  47. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  CAS  Google Scholar 

  48. M.S. Sadjadi, A. Pourahmad, S. Sohrabnezhad, K. Zare, Mater. Lett. 61, 2923 (2007)

    Article  CAS  Google Scholar 

  49. M. Banerjee, L. Chongad, A. Sharma, Res. J. Recent Sci. 2, 326–329 (2013)

    CAS  Google Scholar 

  50. A.K. Srivastava, M. Deepa, N. Bahadur, M.S. Goyat, Mater. Chem. Phys. 114, 194 (2009)

    Article  CAS  Google Scholar 

  51. S. Chakraborty, C.S. Tiwary, A.K. Kole, P. Kumbhakar, K. Chattopadhyay, Mater. Lett. 91, 379–382 (2013)

    Article  CAS  Google Scholar 

  52. M.S. Niasari, G.B. Monfared, H. Emadi, M. Enhessari, C. R. Chimie 16, 929–936 (2013)

    Article  Google Scholar 

  53. H.T. Zhang, G. Wu, X.H. Chen, Mater. Lett. 59, 3728–3731 (2005)

    Article  CAS  Google Scholar 

  54. J.T. Sparks, T. Komoto, Rev. Mod. Phys. 40, 752–754 (1968)

    Article  CAS  Google Scholar 

  55. X.H. Chen, H.T. Zhang, C.H. Wang, X.G. Luo, P.H. Li, Appl. Phys. Lett. 81, 4419–4421 (2002)

    Article  CAS  Google Scholar 

  56. M.S. Niasari, F. Davar, M. Mazaheri, Mater. Res. Bull. 44, 2246–2251 (2009)

    Article  Google Scholar 

  57. F. Cao, R.X. Liu, L. Zhou, S.Y. Song, Y.Q. Lei, W.D. Shi, J. Mater. Chem. 20, 1078–1085 (2010)

    Article  CAS  Google Scholar 

  58. R. Velmurugan, M. Swaminathan, Sol. Energy Mater. Sol. Cells 95, 942 (2011)

    Article  CAS  Google Scholar 

  59. R. Velmurugan, B. Sreedhar, M. Swaminathan, Chem. Cent. J. 5, 46 (2011)

    Article  Google Scholar 

  60. R. Velmurugan, B. Krishnakumar, M. Swaminathan, Mater. Sci. Semicond. Proces. (2014), 10.1016/j.mssp.2013.10.024

  61. R. Velmurugan, B. Krishnakumar, B. Subash, M. Swaminathan, Sol. Energy Mater. Sol. Cells 108, 205–212 (2013)

    Article  CAS  Google Scholar 

  62. K. Selvam, S. Balachandran, R. Velmurugan, M. Swaminathan, Appl. Catal. A 413, 213–222 (2012)

    Article  Google Scholar 

  63. A. Furube, T. Asahi, H. Masuhara, H. Yamashita, M. Anpo, Chem. Phys. Lett. 336, 424–430 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, A. Manikandan is thankful to CSIR, New Delhi, India, for the award of Senior Research Fellowship (CSIR-SRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Manikandan or S. Arul Antony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, A., Hema, E., Durka, M. et al. Mn2+ Doped NiS (Mn x Ni1−x S: x = 0.0, 0.3 and 0.5) Nanocrystals: Structural, Morphological, Opto-magnetic and Photocatalytic Properties. J Inorg Organomet Polym 25, 804–815 (2015). https://doi.org/10.1007/s10904-014-0163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0163-4

Keywords

Navigation