Skip to main content
Log in

Enhanced Magneto-Optical, Morphological, and Photocatalytic Properties of Nickel-Substituted SnO2 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this present study, pure and Ni2+ (3, 7, and 10% mol.)-substituted SnO2 nanoparticles (NPs) were synthesized by sol-gel method. The prepared samples were characterized by powder XRD, FT-IR, FE-SEM, HR-TEM, EDX, UV-visible spectra, room temperature (RT) photoluminescence (PL) spectroscopy, and VSM techniques. XRD study revealed the polycrystalline tetragonal rutile structure of pure and Ni2+-substituted SnO2 NPs. Crystallite size of pure and Ni2+-substituted SnO2 NPs were found to be 26 to 34 nm in range. FT-IR study confirmed the presence of metal-oxide (M-O) bond vibrations for pure and Ni-substituted SnO2 NPs. FE-SEM, EDX, HR-TEM, and SAED pattern indicated that pure and Ni2+-substituted SnO2 NPs are well-defined formation of spherical-sized nanocrystallites, with diameter of about 10–40 nm of grain size. UV-Vis spectrum specified a sharp absorption peak ~ 425 nm representing the band to band transition. RT-PL study showed the peak ~ 467 nm for all samples, indicating the band gap of 2.65 eV. The higher value of Ms is found to be 0.0429 emu/g for Ni-substituted SnO2 NPs. Magnetic study revealed that the Ni-substituted SnO2 NPs presented ferromagnetism. Photocatalytic degradation (PCD) of methylene blue (MB) was analyzed using photo-catalytic reactor and obtained the maximum of PCD efficiency of 3% Ni-substituted SnO2 NPs under the visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Elayakumar, K., Manikandan, A., Dinesh, A., Thanrasu, K., Raja, K.K., Kumar, R.T.: Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019)

    ADS  Google Scholar 

  2. Silambarasu, A., Manikandan, A., Balakrishnan, K., Jaganathan, S.K.: Comparative study of structural, morphological, magneto-optical and photo-catalytic properties of magnetically reusable spinel MnFe2O4 nano-catalysts. J. Nanosci. Nanotechnol. 18, 3523–3531 (2018)

    Google Scholar 

  3. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S.K., Antony, S.A.: Sol–gel synthesis and characterization studies of NiMoO4 nanostructures for photocatalytic degradation of methylene blue dye. Nanosci. Nanotechnol. Lett. 8, 438–443 (2016)

    Google Scholar 

  4. Umapathy, V., Manikandan, A., Antony, S.A., Ramu, P., Neeraja, P.: Structure, morphology and opto-magnetic properties of Bi2MoO6 nano-photocatalyst synthesized by sol–gel method. Transac. Nonferr. Met. Soc. China. 25, 3271–3278 (2015)

    Google Scholar 

  5. Manikandan, A., Vijaya, J.J., Kennedy, L.J.: Structural, optical and magnetic properties of porous α-Fe2O3 nanostructures prepared by rapid combustion method. J. Nanosci. Nanotechnol. 13, 2986–2992 (2013)

    Google Scholar 

  6. Ben Salem, M.K., Slimani, Y., Hannachi, E., Ben Azzouz, F., Ben Salem, M.: Bi-based superconductors prepared with addition of CoFe2O4 for the design of a magnetic probe. Cryogenics. 89, 53–57 (2018)

    ADS  Google Scholar 

  7. Yasin, G., Anjum, M.J., Malik, M.U., Khan, M.A., Khan, W.Q., Arif, M., Mehtab, T., Nguyen, T.A., Slimani, Y., Tabish, M., Ali, D., Zuo, Y.: Revealing the erosion-corrosion performance of sphere-shaped morphology of nickel matrix nanocomposite strengthened with reduced graphene oxide nanoplatelets. Diam. Relat. Mater. 104, 107763 (2020)

    ADS  Google Scholar 

  8. Almessiere, M.A., Slimani, Y., Guner, S., Sertkol, M., Korkmaz, A.D., Shirsath, S.E., Baykal, A.: Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason. Sonochem. 58, 104654 (2019)

    Google Scholar 

  9. Slimani, Y., Almessiere, M.A., DemirKorkmaz, A., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S.E., Baykal, A.: Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: ultrasonic synthesis and physical properties. Ultrason. Sonochem. 59, 104757 (2019)

    Google Scholar 

  10. Almessiere, M.A., Slimani, Y., Baykal, A.: Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceram. Int. 45, 963–969 (2019)

    Google Scholar 

  11. Slimani, Y., Unal, B., Hannachi, E., Selmi, A., Almessiere, M.A., Nawaz, M., Baykal, A., Ercan, I., Yildiz, M.: Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3-SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)

    Google Scholar 

  12. Hannachi, E., Slimani, Y., Ben Azzouz, F., Ekicibil, A.: Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceram. Int. 44, 18836–18843 (2018)

    Google Scholar 

  13. Slimani, Y., Almessiere, M.A., Hannachi, E., Mumtaz, M., Manikandan, A., Baykal, A., Ben Azzouz, F.: Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceram. Int. 45, 6828–6835 (2019)

    Google Scholar 

  14. Slimani, Y., Almessiere, M.A., Shirsath, S.E., Hannachi, E., Yasin, G., Baykal, A., Ozçelik, B., Ercan, I.: Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020)

    Google Scholar 

  15. Seevakan, K., Manikandan, A., Devendran, P., Slimani, Y., Baykal, A., Alagesan, T.: Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn. Mater. 486, 165254 (2019)

    Google Scholar 

  16. Slimani, Y., Hannachi, E., Ekicibil, A., Almessiere, M.A., Azzouz, F.B.: Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019)

    Google Scholar 

  17. Slimani, Y., Almessiere, M.A., Hannachi, E., Manikandan, A., Algarni, R., Baykal, A., Azzouz, F.B.: Flux pinning properties of YBCO added by WO3 nanoparticles. J. Alloys Compd. 810, 151884 (2019)

    Google Scholar 

  18. Asiri, S., Sertkol, M., Güngüneş, H., Amir, M., Manikandan, A., Ercan, İ., Baykal, A.: The temperature effect on magnetic properties of NiFe2O4 nanoparticles. J. Inorg. Organomet. Polym. 28, 1587–1597 (2018)

    Google Scholar 

  19. Hannachi, E., Slimani, Y., Ekicibil, A., Manikandan, A., Azzouz, F.B.: Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide. J. Mater. Sci. Mater. Electron. 30, 8805–8813 (2019)

    Google Scholar 

  20. Manikandan, A., Vijaya, J.J., Kennedy, L.J.: Comparative study of pure and Ni-doped ZnFe2O4 nanoparticles for structural, optical and magnetic properties. Adv. Mater. Res. 699, 524–529 (2013)

    Google Scholar 

  21. Adnan, R., Razana, N.A., Rahman, I.A., Farrukh, M.A.: Synthesis and characterization of high surface area tin oxide nanoparticles via the sol-gel method as a catalyst for the hydrogenation of styrene. Chin. Chem. Soc. 57, 222–229 (2010)

    Google Scholar 

  22. Cirera, A., Vila, A., Cornet, A., Morante: Microwave-assisted synthesis and investigation of SnO2 nanoparticles. J.R. Mater. Sci. Eng. C. 15, 203–205 (2001)

    Google Scholar 

  23. Srivastava, A., Lakshmikumar, S.T., Srivastava, A.K., Rashmi, K.J.: Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique. Sensors Actuators B. 126, 583–587 (2007)

    Google Scholar 

  24. Lagashetty, A., Venkataraman, A.: Adsorption study of Pb2+ ions on nanosized SnO2, synthesized by self-propagating combustion reaction bull. Mater. Sci. 2, 491–495 (2004)

    Google Scholar 

  25. Sharma, A., Varshney, M., Kumar, S., Verma, K.D., Kumar, R.: Magnetic properties of Fe and Ni doped SnO2 nanoparticles nanomater. Nanotechnol. 1, 24–28 (2011)

    Google Scholar 

  26. Ahmed, A.S., Muhamed, S.M., Singla, M.L., Tabassum, S., Naqvi, A.H., Azam, A.: Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)

    Google Scholar 

  27. Wan, N., Zhao, T., Sun, S., Wu, Q., Bai, Y.: Nickel and nitrogen co-doped tin dioxide nano-composite as a potential anode material for lithium-ion batteries. Electrochim. Acta. 143, 257–264 (2014)

    Google Scholar 

  28. Wang, W.-X., Wang, J.-F., Chen, H.-C., Wen-Bin, S., Zang, G.-Z.: Electrical nonlinearity of (Cu, Ni, Nb) - doped SnO2 varistors system. Mater. Sci. Eng. B99, 457–460 (2003)

    Google Scholar 

  29. Aragon, F.H., Coaquira, J.A.H., Hidalgo, P., da Silva, S.W., Brito, S.L.M., Gouveac, D., Morais, P.C.: Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy. J. Raman Spectrosc. 42, 1081–1086 (2011)

    ADS  Google Scholar 

  30. Varshney, D., Verma, K.: Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. J. Mol. Struct. 1034, 216–222 (2013)

    ADS  Google Scholar 

  31. Manseki, A.K., Sugiuraa, T., Yoshida, T.: Microwave synthesis of size-controllable SnO2 nanoc1rystals for dye-sensitized solar cells. New J. Chem. 38, 598–603 (2014)

    Google Scholar 

  32. Hidalgo Falla, P., Peres, H.E.M., Gouvea, D., Ramirez-Fernandez, F.J.: Doped tin oxide nanometric films for environment monitoring. Mater. Sci. Forum. 498-499, 636–641 (2005)

    Google Scholar 

  33. Duhan, M., Kaur, H., Bhardwaj, R., Kumar, N., Kumar, S., Gupta, A., Gautam, S.: Magnetic metamorphosis of structurally enriched sol-gel derived SnO2 nanoparticles. Vacuum. 166, 385–392 (2019)

    ADS  Google Scholar 

  34. Liu, C.M., Fang, L.M., Zu, X.T., Zhou, W.L.: The magnetism and photoluminescence of nickel-doped SnO2 nano-powders. Phys. Scr. 80, 065703 (2009)

    ADS  Google Scholar 

  35. Brinker, C.J., Scherer, G.W.: Sol–Gel science: the physics and chemistry of sol–gel processing. Academic Press, Inc, New York (1990)

    Google Scholar 

  36. Mukhopadhyay, S., Das, P.P., Maity, S., Ghosh, P., Devi, P.S.: Solution grown ZnO rods: synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B. 165, 128–138 (2015)

    Google Scholar 

  37. Huang, M.L., Weng, S.X., Wang, B., Hu, J., Fu, X.Z., Liu, P.: Various facet tunable ZnO crystals by a scalable solvothermal synthesis and their facet-dependent photocatalytic activities. J. Phys. Chem. C 118, 25434–25440 (2014)

    Google Scholar 

  38. Kumar, S.G., Koteswara Rao, K.S.R.: Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015)

    ADS  Google Scholar 

  39. Zhang, H., He, Q., Zhu, X., Pan, D., Deng, X., Jiao, Z.: Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties. Cryst. Eng. Comm. 14, 3169–3176 (2012)

    Google Scholar 

  40. Mani, R., Vivekanandan, K., Jegatheesan, A.: High performance photocatalytic activity of pure and Ni doped SnO2 nanoparticles by a facile wet chemical route. J. Mater. Sci. Mater. Electron. 29, 6308–6315 (2018)

    Google Scholar 

  41. Azam, A., Ahmed, A.S., Habib, S.S., Naqvi, A.H.: Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles. J. Alloys Compd. 523, 83–87 (2012)

    Google Scholar 

  42. Kuppan, M., Kaleemulla, S., Rao, N.M., Sai Krishna, N., Rigana Begam, M., Shobana, M.: Structural and magnetic properties of Ni doped SnO2 nanoparticles. Adv. Cond. Matter. Phys. 284237, (2014)

  43. Yang, H., Jin, W., Wang, L.: Synthesis and characterization of V2O5-doped SnO2 nanocrystallites for oxygen-sensing properties. Mater. Lett. 57, 3686–3689 (2003)

    Google Scholar 

  44. Hirano, M., Ota, K., Iwata, H.: Direct formation of anatase (TiO2)/silica (SiO2) composite nanoparticles with high phase stability of 1300 °C from acidic solution by hydrolysis under hydrothermal condition. Chem. Mater. 16, 3725–3732 (2004)

    Google Scholar 

  45. Fu, X., Zhang, H., Niu, S., Xin, Q.: Synthesis and luminescent properties of SnO2:Eu nanopowder via polyacrylamide gel method. J. Solid State Chem. 178, 603–607 (2005)

    ADS  Google Scholar 

  46. Chuah, L.S., Yaacob, M.Y., Fan, M.S., Hassan, S.S.T.Z.: Optoelect. Synthesis, characterization and optical properties of Ni doped SnO2 nanocrystalline. Adv. Mater. Rapid Commun. 4, 1542 (2010)

    Google Scholar 

  47. Gattu, K.P., Ghule, K., Kashale, A.A., Patil, V.B., Phase, D.M., Mane, R.S., Han, S.H., Sharma, R., Ghule, A.V.: Bio-green synthesis of Ni-doped tin oxide nanoparticles and its influence on gas sensing properties. RSC Adv. 89, 72849–72856 (2015)

    ADS  Google Scholar 

  48. Priyadharshini, E., Suresh, S., Gunasekaran, S., Srinivasan, S., Manikandan, A.: Investigation on electrochemical performance of SnO2-carbon nanocomposite as better anode material for lithium ion battery. Physica B. 569, 8–13 (2019)

    ADS  Google Scholar 

  49. Krishnakumar, T., Pinna, N., Kumari, K.P., Perumal, K., Jayaprakash, R.: Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater. Lett. 62, 3437–3440 (2008)

    Google Scholar 

  50. Azam, A., Ahmed, A.S., Shahnawaze Ansari, M., Shafeeq, M., Alim, M., Naqvi, H.: Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. J. Alloys Compd. 506, 237–242 (2010)

    Google Scholar 

  51. Ahmad, T., Khatoon, S., Coolahan, K.: Synthesis, magnetic and dielectric characterization of nanocrystalline solid solutions of In2-xNixO3 (x = 0.05, 0.10 and 0.15). Mater. Res. Bull. 48, 3065–3071 (2013)

    Google Scholar 

  52. Ahmad, T., Khatoon, S.: Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles. J. Mater. Res. 28, 1245–1253 (2013)

    ADS  Google Scholar 

  53. Sharma, A., Varshney, M., Kumar, S., Verma, K.D., Kumar, R.: Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater. Nanotechnol. 1, 29–33 (2011)

    Google Scholar 

  54. Priyadharshini, E., Suresh, S., Srinivasan, S., Manikandan, A.: Structural, optical, thermal and electrochemical analysis of annealed SnO2–C nanocomposite. Physica B. 566, 17–22 (2019)

    ADS  Google Scholar 

  55. Azam, A., Ahmed, A.S., Chaman, M., Naqvi, A.H.: Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy. J. Appl. Phys. 108, 094329 (2010)

    ADS  Google Scholar 

  56. Bargougui, R., Oueslati, A., Schmerber, G., Ulhaq-Bouillet, C., Colis, S., Hlel, F., Ammar, S., Dinia, A.: Structural, optical and electrical properties of Zn-doped SnO2 nanoparticles synthesized by the co-precipitation technique. J. Mater. Sci. Mater. Electron. 25, 2066–2071 (2014)

    Google Scholar 

  57. Chun-Ming, L., Li-Mei, F., Xiao-Tao, Z., Wei-Lie, Z.: The influence of nickel dopant on the microstructure and optical properties of SnO2 nano-powders. Chin. Phys. 16, 95 (2007)

    Google Scholar 

  58. Rakhshani, A.E., Makdisi, Y., Ramazaniyan, H.A.: Electronic and optical properties of fluorine-doped tin oxide films. J. Appl. Phys. 83, 1049 (1998)

    ADS  Google Scholar 

  59. Park, Y.R., Kim, K.J.: Sputtering growth and optical properties of [100]-oriented tetragonal SnO2 and its Mn alloy films. J. Appl. Phys. 94, 6401 (2003)

    ADS  Google Scholar 

  60. Barreau, N., Bernede, J.C., Marsillac, S., Mokrani, A.: Study of low temperature elaborated tailored optical band gap β-In2S3−3xO3x thin films. J. Cryst. Growth. 235, 439–449 (2002)

    ADS  Google Scholar 

  61. Chen, H., Ding, L., Sun, W., Jiang, Q., Hu, J., Li, J.: Synthesis and characterization of Ni doped SnO2 microspheres with enhanced visible-light photocatalytic activity. RSC Adv. 5, 56401–56409 (2015)

    ADS  Google Scholar 

  62. Ahmad, T., Khatoon, S.: Structural characterization and properties of nanocrystalline Sn1-xCoxO2 based dilute magnetic semiconductors. J. Mater. Res. 30, 1611–1618 (2015)

    ADS  Google Scholar 

  63. Aragon, F.H., Coaquira, J.A.H., Hidalgo, P., Brito, S.L.M., Gouvea, D., Castro, R.H.R.: Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J. Phys. Condens. Matter. 22, 496003 (2010)

    Google Scholar 

  64. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    ADS  Google Scholar 

  65. Manikandan, A., Antony, S.A.: A novel approach for the synthesis and characterization studies of Mn2+-doped CdS nanocrystals by a facile microwave-assisted combustion method. J. Supercond. Nov. Magn. 27, 2725–2733 (2014)

    Google Scholar 

  66. Mary, J.A., Manikandan, A., Kennedy, L.J., Bououdina, M., Sundaram, R.: Structure and magnetic properties of Cu-Ni alloy nanoparticles prepared by rapid microwave combustion method. Transact. Nonferr. Met. Soc. China. 24, 1467–1473 (2014)

    Google Scholar 

  67. Chetri, P., Choudhury, A.: Investigation of structural and magnetic properties of nanoscale Cu doped SnO2: an experimental and density functional study. J. Alloys Compd. 627, 261–267 (2015)

    Google Scholar 

  68. Divya, J., Pramothkumar, A., Joshua Gnanamuthu, S., Bernice Victoria, D.C., Jobe Prabakar, P.C.: Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach. Physica B. 588, 412169 (2020)

    Google Scholar 

  69. Pascariu, P., Grigoras, M., Fifere, N., Sacarescu, L., Lupu, N., Stoleriu, L.: Structural, optical and magnetic properties of Ni doped SnO2 nanoparticles. J. Alloys Compd. 668, 65–72 (2016)

    Google Scholar 

  70. Mani, R., Vivekanandan, K., Subiramaniyam, N.P.: Photocatalytic activity of different organic dyes by using pure and Fe doped SnO2 nanopowders catalyst under UV light irradiation J. Mater. Sci. 28, 13846–13852 (2017)

    Google Scholar 

  71. Hidalgo, P., Castro, R.H.R., Coelho, A.C.V., Gouvêa, D.: Surface segregation and consequent SO2 sensor response in SnO2-NiO. Chem. Mater. 17, 4149–4153 (2005)

    Google Scholar 

  72. Manikandan, A., Sridhar, R., Antony, S.A., Ramakrishna, S.: A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014)

    ADS  Google Scholar 

  73. Senthil, R.A., Osman, S., Pan, J., Sun, Y., Kumar, T.R., Manikandan, A.: A facile hydrothermal synthesis of visible-light responsive BImpact FactoreWO6/MoS2 composite as superior photocatalyst for degradation of organic pollutants. Ceram. Int. 45, 18683–18690 (2019)

    Google Scholar 

  74. Muthukrishnaraj, A., Kalaivani, S.S., Manikandan, A., Kavitha, H.P., Srinivasan, R., Balasubramanian, N.: Sonochemical synthesis and visible light induced photocatalytic property of reduced graphene oxide@ ZnO hexagonal hollow rod nanocomposite. J. Alloys Compd. 83625, 155377 (2020)

    Google Scholar 

  75. Senthil, R.A., Osman, S., Pan, J., Khan, A., Yang, V., Kumar, T.R., Sun, Y., Manikandan, A.: One-pot preparation of AgBr/α-Ag2WO4 composites with superior photocatalytic activity under visible-light irradiation. Colloids Surf. A: Physicochem. Eng. Aspect. 586, 124079 (2020)

    Google Scholar 

  76. Muthukrishnaraj, A., Arun, A., Kalaivani, S.S., Maiyalagan, T., Manikandan, A., Balasubramanian, N.: Solvothermal synthesis and characterizations of graphene-ZnBi12O20 nanocomposites for visible-light driven photocatalytic applications. Ceram. Int. 46, 18534–18543 (2020)

    Google Scholar 

  77. Rathinavel, S., Deepika, R., Panda, D., Manikandan, A.: Synthesis and characterization of MgFe2O4 and MgFe2O4/rGO nanocomposites for the photocatalytic degradation of methylene blue. Inorg. Nano-Metal Chem. (2020). https://doi.org/10.1080/24701556.2020.1771590

  78. Manikandan, A., Manikandan, E., Vadivel, S., Kumaravel, M., Maruthamani, D., Hariganesh, S.: Photocatalysis: present, past and future (Organic Pollutants in Wastewater-I Methods of Analysis, Removal and Treatment). Mater. Res. Found. 29, 34 (2018). https://doi.org/10.21741/9781945291630-7

    Article  Google Scholar 

  79. Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Paul, B., Sankar Dhar, S., Yangjeh, A.H., Manikandan, A., Ramadoss, G.: Facile synthesis of Bi2O3/reduced graphene oxide (RGO) nanocomposite for supercapacitor and visible light photocatalytic applications. J. Colloidal Interf. Sci. 498, 449–459 (2017)

    ADS  Google Scholar 

Download references

Acknowledgments

The author (A.M) is thankful to the management of Bharath Institute of Higher Education and Research (BIHER) for their support and encouragement. This project was funded by the Deanship of Scientific Research (DSR) at King Khalid University (KKU), Abha, under Grant No. G.R.P-316-40. The authors (Basem Abdullah Al Alwan and Khaled Mohamed Khedher), therefore, acknowledge with thanks to DSR and the Chemical Engineering Department in the College of Engineering (KKU) for financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Manikandan or S. Srinivasan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renuga, R., Manikandan, A., Mary, J.A. et al. Enhanced Magneto-Optical, Morphological, and Photocatalytic Properties of Nickel-Substituted SnO2 Nanoparticles. J Supercond Nov Magn 34, 825–836 (2021). https://doi.org/10.1007/s10948-020-05766-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05766-x

Keywords

Navigation