Skip to main content
Log in

Packing convex polygons in minimum-perimeter convex hulls

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The problem of packing a given set of freely translated and rotated convex polygons in a minimum-perimeter convex polygon (in particular the minimum-perimeter convex hull) is introduced. A mathematical model of the problem using the phi-function technique is provided. Problem instances with up to 6 convex polygons are solved by the global NLP solver BARON to get a minimum-perimeter convex hull. Numerical experiments for larger instances are reported using the local NLP solver IPOPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahn, H.K., Cheong, O.: Aligning two convex figures to minimize area or perimeter. Algorithmica 62, 464–479 (2012). https://doi.org/10.1007/s00453-010-9466-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H., de Berg, M., Knauer, C.: Approximating minimum-area rectangular and convex containers for packing convex polygons. In: Bansal, N., Finocchi, I. (eds.) Algorithms—ESA 2015. Lecture Notes in Computer Science, vol. 9294. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-48350-3_3

    Chapter  Google Scholar 

  3. Araújo, L.J.P., Özcan, E., Atkin, J.A.D., Baumers, M.: Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. Int. J. Prod. Res. 57(18), 5920–5934 (2019). https://doi.org/10.1080/00207543.2018.1534016

    Article  Google Scholar 

  4. Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom. Theory Appl. 7(5–6), 265–301 (1997). https://doi.org/10.1016/S0925-7721(96)00023-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184(2), 397–415 (2008). https://doi.org/10.1016/j.ejor.2006.11.038

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennell, J.A., Oliveira, J.F.: A tutorial in irregular shape packing problems. J. Oper. Res. Soc. 60(1), 93–105 (2009). https://doi.org/10.1057/jors.2008.169

    Article  MATH  Google Scholar 

  7. Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T., Pankratov, A.: Optimal clustering of a pair of irregular objects. J. Global Optim. 61(3), 497–524 (2015). https://doi.org/10.1007/s10898-014-0192-0

    Article  MathSciNet  MATH  Google Scholar 

  8. De Berg, M., Otfried, C., Marc, V.K., Mark, O.: Computational Geometry Algorithms and Applications, pp. 2–14. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  9. Chernov, N., Stoyan, Y., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. Theory Appl. 43(5), 535–553 (2010). https://doi.org/10.1016/j.comgeo.2009.12.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill (2001). ISBN 0-262-03293-7. Section 33.3: Finding the convex hull, 947–957

  11. Dumonteil, E., Majumdar, S.N., Rosso, A., Zoia, A.: Spatial extent of an outbreak in animal epidemics. Proc. Natl. Acad. Sci. USA 110(11), 4239–4244 (2013). https://doi.org/10.1073/pnas.1213237110

    Article  Google Scholar 

  12. Fasano, G.: Non-standard packing problems: a modelling-based approach. In: Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer Briefs in Optimization. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05005-8_1

  13. Gimenez-Palacios, I., Alonso, M.T., Alvarez-Valdes, R., Parreño, F.: Logistic constraints in container loading problems: the impact of complete shipment conditions. TOP (2020). https://doi.org/10.1007/s11750-020-00577-8

    Article  MATH  Google Scholar 

  14. Grebennik, I.V., Kovalenko, A.A., Romanova, T.E., Urniaieva, I.A., Shekhovtsov, S.B.: Combinatorial configurations in balance layout optimization problems. Cybern. Syst. Anal. 54(2), 221–231 (2018). https://doi.org/10.1007/s10559-018-0023-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones, D.R.: A fully general, exact algorithm for nesting irregular shapes. J. Global Optim. 59, 367–404 (2013). https://doi.org/10.1007/s10898-013-0129-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Global Optim. 43, 299–328 (2009). https://doi.org/10.1007/s10898-007-9274-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Kallrath, J., Frey, M.M.: Minimal surface convex hulls of spheres. Vietnam J. Math. 46, 883–913 (2018). https://doi.org/10.1007/s10013-018-0317-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Kallrath, J., Frey, M.M.: Packing circles into perimeter-minimizing convex hulls. J. Global Optim. 73(4), 723–759 (2019). https://doi.org/10.1007/s10898-018-0724-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Kampas, F.J., Pintér, J.D., Castillo, I.: Optimal packing of general ellipses in a circle. In: Takáč, M., Terlaky, T. (eds.) Modeling and Optimization: Theory and Applications. MOPTA 2016. Springer Proceedings in Mathematics & Statistics, vol. 213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66616-7_2

    Chapter  Google Scholar 

  20. Kampas, F.J., Castillo, I., Pintér, J.D.: Optimized ellipse packings in regular polygons. Optim. Lett. 13(7), 1583–1613 (2019). https://doi.org/10.1007/s11590-019-01423-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Kampas, F.J., Pintér, J.D., Castillo, I.: Packing ovals in optimized regular polygons. J. Glob. Optim. 77, 175–196 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. 10, 383–421 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leao, A.A.S., Toledo, F.M.B., Oliveira, J.F., Carravilla, M.A., Alvarez-Valdés, R.: Irregular packing problems: a review of mathematical models. Eur. J. Oper. Res. 282(3), 803–822 (2020). https://doi.org/10.1016/j.ejor.2019.04.045

    Article  MathSciNet  MATH  Google Scholar 

  24. Litvinchev, I., Rangel, S.: Localization of the optimal solution and a posteriori bounds for aggregation. Comput. Oper. Res. 26(10–11), 967–988 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Litvinchev, I., Mata, M., Rangel, S., Saucedo, J.: Lagrangian heuristic for a class of the generalized assignment problems. Comput. Math. Appl. 60(4), 1115–1123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized convex polygon. J. Global Optim. 75(2), 495–522 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized rectangular container. Wirel. Netw. 26(7), 4869–4879 (2020)

    Article  Google Scholar 

  28. Park, D., Bae, S.W., Alt, H., Ahn, H.K.: Bundling three convex polygons to minimize area or perimeter. Comput. Geom. 51, 1–14 (2016). https://doi.org/10.1016/j.comgeo.2015.10.003

    Article  MathSciNet  MATH  Google Scholar 

  29. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Book  MATH  Google Scholar 

  30. Romanova, T., Bennell, J., Stoyan, Y., et al.: Packing of concave polyhedra with continuous rotations using nonlinear optimisation. Eur. J. Oper. Res. 268, 37–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Romanova, T., Litvinchev, I., Pankratov, A.: Packing ellipsoids in an optimized cylinder. Eur. J. Oper. Res. 285, 429–443 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sahinidis, N.V.: BARON 19.12.7: global optimization of mixed-integer nonlinear programs, User's manual (2019)

  33. Scheithauer, G.: Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches, Solution Methods. Springer, Cham (2018). ISBN 978-3-319-64403-5

  34. Stoyan, Yu., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Global Optim. 65(2), 283–307 (2016). https://doi.org/10.1007/s10898-015-0331-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Stoyan, Y., Pankratov, A., Romanova, T.: Placement problems for irregular objects: mathematical modeling, optimization and applications. In: Butenko, S., Pardalos, P., Shylo, V. (eds.) Optimization Methods and Applications. Springer Optimization and Its Applications, vol. 130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68640-0_25

    Chapter  MATH  Google Scholar 

  36. Stoyan, Y., Pankratov, A., Romanova, G., Fasano, J., Pinter, T., Stoian, Y.E., Chugay, A.: Optimized packings in space engineering applications: part I. In: Fasano, G., Pintér, J. (eds.) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol. 144, pp. 395–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10501-3_15

    Chapter  Google Scholar 

  37. Tang, K., Wang, C.C.L., Chen, D.Z.: Minimum area convex packing of two convex polygons. Int. J. Comput. Geom. Appl. 16(1), 41–74 (2006). https://doi.org/10.1142/S0218195906001926

    Article  MathSciNet  MATH  Google Scholar 

  38. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8

    Article  MathSciNet  MATH  Google Scholar 

  39. Torres-Escobar, R., Marmolejo-Saucedo, J.A., Litvinchev, I.: Binary monkey algorithm for approximate packing non-congruent circles in a rectangular container. Wirel. Netw. 26(7), 4743–4752 (2020)

    Article  Google Scholar 

  40. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

  41. Warade, A., Mulay, P., Chaudhari, A.: Packing irregular shapes for three-dimensional printing: a bibliographical study. Int. J. Sci. Tech. Res. 9(2), 773–779 (2020)

    Google Scholar 

  42. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007). https://doi.org/10.1016/j.ejor.2005.12.047

    Article  MATH  Google Scholar 

  43. Yagiura, M., Umetani, S., Imahori, S.: Cutting and Packing Problems. From the Perspective of Combinatorial Optimization. Springer, Berlin (2021). ISBN 978-4-431-55291-8

Download references

Acknowledgements

This research is partially supported by National Research Foundation of Ukraine (Grant No. 2020.02/0128) and Volkswagen Foundation Grant #Az97775.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Romanova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: On an analytical solution for the minimum perimeter convex hull of two triangles

Appendix: On an analytical solution for the minimum perimeter convex hull of two triangles

For the case of two triangles, we may expect geometrical characteristics of the optimal layout. Leaving the rigorous proof for our forthcoming paper, we present here these characteristics in the form of the following conjecture.

Conjecture

The minimal perimeter convex hull for two triangles corresponds to a layout with two tangent largest sides of the triangles (see Fig

Fig. 12
figure 12

The minimum perimeter convex hull of two tangent triangles

12).

The motivation for this conjecture is as follows. If the triangles have no common points (totally separated), then we can move one triangle till they are tangent thus reducing the perimeter. Suppose that there is only one tangent point (a vertex of the triangle). Then we can rotate the corresponding triangle around its tangent vertex till the triangles have tangent sides and thus reducing the perimeter. Finally, among all layouts with tangent sides, the case of tangent largest sides corresponds to the minimal perimeter convex hull by the triangle inequality. The rigorous proof of this conjecture is on the way.

Suppose that we have two triangles with their largest tangent sides. Then to get a layout with minimum perimeter convex hull we must define the position of the vertex of one triangle on the tangent side of another (see Fig. 12). This can be done as follows.

Consider two triangles with vertices \(A_{i}\), \(B_{i}\), and \(C_{i}\), sides \(a_{i}\), \(b_{i}\), and \(c_{i}\), and internal angles \(\alpha_{i}\), \(\beta_{i}\), and \(\gamma_{i}\), \(i = 1,2\). The naming is such, that \(c_{1} = A_{1} B_{1}\) is the largest side of the triangle 1 and that \(c_{1}\) is greater than or equal to the largest side of the triangle 2. Therefore,\(A_{1}\) and \(B_{1}\) are vertices of the convex hull polygon \({\rm P}\).

Triangle 1 is placed such that its vertex \(A_{1}\) is in the origin of the \(x\)\(- y\)-coordinate system, \(B_{1}\) is at \((c,0)\), and \(C_{1}\) is in the fourth quadrant with at \((x_{1} ,y_{1} )\) with \(x_{1} > 0\) and \(y_{1} < 0\). \(C_{1}\) is another vertex of the convex hull polygon \({\rm P}\).

If we place triangle 2 such that \(A_{2}\) and \(B_{2}\) are on the positive axis with \(0 \le x_{2A} < c\) and \(0 < x_{2B} < c\), then \(C_{2}\) at \((x_{2} ,y_{2} )\) completes the system of vertices of \({\rm P}\) (Fig. 12).

The \(y_{2}\)-coordinate follows from the triangle itself; it is just its height, i.e.,

$$ y_{2} = b_{2} \sin \alpha_{2} ,\alpha_{2} = arc\cos \frac{{b_{2}^{2} + c_{2}^{2} - a_{2}^{2} }}{{2b_{2} c_{2} }}, $$

where \((v_{{x_{2A} }} ,v_{{y_{2A} }} ) = (0,0)\), \((v_{{x_{2B} }} ,v_{{y_{2B} }} )\) and \((v_{{x_{2C} }} ,v_{{y_{2C} }} )\) are the intrinsic vertex coordinates of triangle 2.

As

$$ x_{2B} = x_{2A} + c, $$

and

$$ x_{2C} = x_{2} = x_{2A} + b_{2} \cos \alpha_{2} , $$

the convex hull perimeter ℓ = ℓ(P) depends only on one variable \(x = x_{2A}\):

$$ l = a_{1} + b_{1} + \sqrt {(x + b_{2} \cos \alpha_{2} )^{2} + y_{2}^{2} } + \sqrt {(c_{1} - (x + b_{2} \cos \alpha_{2} ))^{2} + y_{2}^{2} } . $$

The contributions \(a_{1}\) and \(b_{1}\) are constant and can be computed a priori—for this arrangement of the two triangles. Other arrangements—in which the two triangles have one touching line—follow by permutations and can be evaluated similarly.

For simplification, let us introduce

$$ u = x + b_{2} \cos \alpha_{2} ,v = a_{1} + b_{1} $$

and follow up with

$$ l(u) = v + \sqrt {u^{2} + y_{2}^{2} } + \sqrt {(c_{1} - u)^{2} + y_{2}^{2} } . $$

Now we consider \(l^{\prime}(u)\) and \(l^{\prime\prime}(u)\) to find the local minimum \(u_{*}\):

$$ l^{\prime}(u) = \frac{u}{{\sqrt {y_{2}^{2} + u^{2} } }} - \frac{{c_{1} - u}}{{\sqrt {y_{2}^{2} + (c_{1} - u)^{2} } }} $$

and

$$ l^{\prime\prime}(u) = \frac{1}{{\sqrt {u^{2} + y_{2}^{2} } }} + \frac{1}{{\sqrt {y_{2}^{2} + (c_{1} - u)^{2} } }} - \frac{{u^{2} }}{{(u^{2} + y_{2}^{2} )^{\frac{3}{2}} }} - \frac{{(c_{1} - u)^{2} }}{{(y_{2}^{2} + (c_{1} - u)^{2} )^{\frac{3}{2}} }}. $$

For \(u_{*} = \frac{{c_{1} }}{2}\) the first derivative \(l^{\prime}(u_{*} )\) vanishes. The second derivative takes the value

$$ l^{\prime\prime}(u) = 2\left[ {\frac{1}{{\sqrt {\left( {\frac{{c_{1} }}{2}} \right)^{2} + y_{2}^{2} } }}} \right. - \left. {\frac{{\left( {\frac{{c_{1} }}{2}} \right)^{2} }}{{\left( {\left( {\frac{{c_{1} }}{2}} \right)^{2} + y_{2}^{2} } \right)^{\frac{3}{2}} }}} \right] = \frac{{2y_{2}^{2} }}{{\left( {\left( {\frac{{c_{1} }}{2}} \right)^{2} + y_{2}^{2} } \right)^{\frac{3}{2}} }} \ge 0 $$

which is always positive, i.e., we have a local minimum at \(u_{*} = \frac{{c_{1} }}{2}\), or

$$ x = \frac{{c_{1} }}{2} - b_{2} \cos \alpha_{2} = \frac{{c_{1} }}{2} - \frac{{b_{2}^{2} + c_{2}^{2} - a_{2}^{2} }}{{2c_{2} }}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallrath, J., Romanova, T., Pankratov, A. et al. Packing convex polygons in minimum-perimeter convex hulls. J Glob Optim 85, 39–59 (2023). https://doi.org/10.1007/s10898-022-01194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01194-4

Keywords

Navigation