Skip to main content
Log in

Nonlinear biobjective optimization: improvements to interval branch & bound algorithms

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Interval based solvers are commonly used for solving single-objective nonlinear optimization problems. Their reliability and increasing performance make them useful when proofs of infeasibility and/or certification of solutions are a must. On the other hand, there exist only a few approaches dealing with nonlinear optimization problems, when they consider multiple objectives. In this paper, we propose a new interval branch & bound algorithm for solving nonlinear constrained biobjective optimization problems. Although the general strategy is based on other works, we propose some improvements related to the termination criteria, node selection, upperbounding and discarding boxes using the non-dominated set. Most of these techniques use and/or adapt components of IbexOpt, a state-of-the-art interval-based single-objective optimization algorithm. The code of our plugin can be found in our git repository (https://github.com/INFPUCV/ibex-lib/tree/master/plugins/optim-mop).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. An interval \({\varvec{x}}_i=[\underline{x_i},\overline{x_i}]\) defines the set of reals \(x_i\), such that \(\underline{x_i} \le x_i \le \overline{x_i}\). A box \({\varvec{x}}\) is a Cartesian product of intervals \({\varvec{x}}_1 \times \cdots \times {\varvec{x}}_i \times \cdots \times {\varvec{x}}_n\).

  2. We implemented, however, the other three simple discarding tests also used in [11], i.e., the dominance test and the simple and generalized monotonicity tests proposed in [8].

  3. For the CTP instances we consider a function \(\varphi =1+\sum \nolimits _{i=2}^n x_i\), otherwise we obtain only one non-dominated solution: \(x=(0,0,...)\), \(y=(0,1)\). For the CF3 instances we consider a size \(n=5\) instead of \(n=2\), because with \(n=2\), we obtain the undetermined term 2 / 0 in the first objective.

  4. The hypervolume [27] is a quality indicator corresponding to the area of the region dominated by the set of vectors returned by the solver, \(\mathcal {Y}'\), and limited by a reference vector. The optimal hypervolume value corresponds thus to the area of the region dominated by the set of non-dominated vectors \(\mathcal {Y}^*\).

  5. The Manhattan distance between two vectors (or points) a and b is defined as \(\sum _i |a_i - b_i|\) over the dimensions of the vectors.

  6. The larger value obtained for \(N_{max}\) when \(c_y\) is used, can be explained by the fact that, strategies using \(c_y\) generally process a smaller number of boxes (in Table 3, compare the number of processed boxes reported by each strategy), thus it is convenient to generate more feasible solutions in each box.

References

  1. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscipl. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Deb, K.: Multi-objective optimization. In: Search Methodologies. Springer, pp. 403–449 (2014)

  3. Przybylski, A., Gandibleux, X.: Multi-objective branch and bound. Eur. J. Oper. Res. 260(3), 856–872 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Redondo, J.L., Fernández, J., Ortigosa, P.M.: FEMOEA: a fast and efficient multi-objective evolutionary algorithm. Math. Methods Oper. Res. 85(1), 113–135 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Ruetsch, G.: An interval algorithm for multi-objective optimization. Struct. Multidiscip. Optim. 30(1), 27–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fernández, J., Tóth, B.: Obtaining an outer approximation of the efficient set of nonlinear biobjective problems. J. Glob. Optim. 38(2), 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández, J., Tóth, B.: Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods. Comput. Optim. Appl. 42(3), 393–419 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kubica, B. J., Woźniak, A.: Tuning the interval algorithm for seeking pareto sets of multi-criteria problems. In: International Workshop on Applied Parallel Computing. Springer, pp. 504–517 (2012)

  10. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach. J. Glob. Optim. 64(1), 3–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Constraint propagation using dominance in interval branch & bound for nonlinear biobjective optimization. Eur. J. Oper. Res. 260(3), 934–948 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Niebling, J., Eichfelder, G.: A branch-and-bound based algorithm for nonconvex multiobjective optimization. Preprint-Series of the Institute for Mathematics (2018)

  13. Goldsztejn, A., Domes, F., Chevalier, B.: First order rejection tests for multiple-objective optimization. J. Glob. Optim. 58(4), 653–672 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper bounding in inner regions for global optimization under inequality constraints. J. Glob. Optim. 60(2), 145–164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearizations for global optimization. In: AAAI Conference on Artificial Intelligence, pp. 99–104 (2011)

  16. Araya, I., Neveu, B.: lsmear: a variable selection strategy for interval branch and bound solvers. J. Glob. Optim. 71(3), 483–500 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising hull and box consistency. In: International Conference on Logic Programming, Citeseer (1999)

  18. Neveu, B., Trombettoni, G., et al.: Adaptive constructive interval disjunction. In: International Conference on Tools with Artificial Intelligence (ICTAI), pp. 900–906 (2013)

  19. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR 13(3), 247–277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Araya, I., Trombettoni, G., Neveu, B.: A contractor based on convex interval taylor. In: Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. Springer, pp. 1–16 (2012)

  21. Martin, B.: Rigorous algorithms for nonlinear biobjective optimization. Ph.D. dissertation, Université de Nantes (2014)

  22. Tóth, B., Fernández, J.: Interval Methods for Single and Bi-objective Optimization Problems-Applied to Competitive Facility Location Problems. Lambert Academic Publishing, Saarbrücken (2010)

    Google Scholar 

  23. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Principles and Practice of Constraint Programming (CP 2007). Springer, pp. 635–650 (2007)

  25. Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34(3), 922–938 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966)

    MATH  Google Scholar 

  27. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms: a comparative case study. In: International Conference on Parallel Problem Solving from Nature. Springer, pp. 292–301 (1998)

  28. Neveu, B., Trombettoni, G., Araya, I.: Node selection strategies in interval branch and bound algorithms. J. Glob. Optim. 64(2), 289–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fondecyt Project 1160224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Araya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, I., Campusano, J. & Aliquintui, D. Nonlinear biobjective optimization: improvements to interval branch & bound algorithms. J Glob Optim 75, 91–110 (2019). https://doi.org/10.1007/s10898-019-00768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00768-z

Keywords

Navigation