Skip to main content
Log in

Elucidating the Mechanism of Copper-Induced Photoluminescence Quenching in 2-Phenylbenzimidazole-5-Sulfonic Acid

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

To explore the possible impact of 2-Phenylbenzimidazole-5-sulfonic acid (PBSA) on the function of a sunscreen, in this work we investigate the binding of copper metal ions (Cu2+) to PBSA. Due to the existence of an intrinsic interaction phenomenon between Cu2+ ions and PBSA molecules, the photoluminescence (PL) quenching arises owing to the charge transfer from PBSA to Cu2+ ions. The mechanism of fluorescence quenching is probed experimentally following excitation at 306 nm by evaluating various quenching parameters with the help of the Stern–Volmer plot. Through the assessment of the values of the Stern–Volmer constant (\({K}_{SV}=45.2 {M}^{-1}\)) and bimolecular quenching rate constant (\({k}_{q}=0.77\times {10}^{10} {M}^{-1}.{s}^{-1}\)), it is deduced that the dynamic mode of PL quenching is operative between PBSA and Cu2+ ions. We evaluate the number of binding sites (n = 1) that advocate the presence of a single binding site in PBSA for Cu2+ ions. The numerical value of standard Gibbs free energy change, \({\Delta G}^{o}\) ~ -27.485 kJ.mol−1 implies the spontaneous binding between Cu2+ ions and PBSA molecules. The results obtained give an insight into the mechanism of metal-induced PL quenching of water soluble PBSA sunscreen.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included.

References

  1. Chavda VP, Acharya D, Hala V, Vora LK, Dawre S (2023) Sunscreens: A comprehensive review with the application of nanotechnology. J Drug Deliv Sci Technol 86:104720

    Article  CAS  Google Scholar 

  2. Verma A, Zanoletti A, Kareem KY, Adelodun B, Kumar P, Ajibade FO, Silva LF, Phillips AJ, Kartheeswaran T, Bontempi E, Dwivedi A (2023) Skin protection from solar ultraviolet radiation using natural compounds: a review. Environ Chem Lett 22(1):273–295

    Article  Google Scholar 

  3. Plagellat C, Kupper T, Furrer R, De Alencastro LF, Grandjean D, Tarradellas J (2006) Concentrations and specific loads of UV filters in sewage sludge originating from a monitoring network in Switzerland. Chemosphere 62(6):915–925

    Article  CAS  PubMed  Google Scholar 

  4. Richardson SD, Kimura SY (2017) Emerging environmental contaminants: Challenges facing our next generation and potential engineering solutions. Environ Technol Innov 8:40–56

    Article  Google Scholar 

  5. Vita N, Brohem C, Canavez A, Oliveira C, Kruger O, Lorencini M, Carvalho C (2018) Parameters for assessing the aquatic environmental impact of cosmetic products. Toxicol Lett 287:70–82

    Article  CAS  PubMed  Google Scholar 

  6. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    Article  CAS  PubMed  Google Scholar 

  7. Zota AR, Shamasunder B (2017) The environmental injustice of beauty: framing chemical exposures from beauty products as a health disparities concern. Am J Obstet Gynecol 217(4):418.e1-418.e6

    Article  CAS  PubMed  Google Scholar 

  8. Palm MD, O’Donoghue MN (2007) Update on photoprotection. Dermatol Ther 20(5):360–376

    Article  PubMed  Google Scholar 

  9. Mubeen M, ul Ain N, Khalid MA, Mukhtar M, Naz B, Siddique Z, Ul-Hamid A, Iqbal A (2023) Enhancing the FRET by tuning the bandgap of acceptor ternary ZnCdS quantum dots. RSC Adv 13(28):19096–19105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gasparro FP (2000) Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy. Environ Health Perspect 108(suppl 1):71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ji Y, Zhou L, Ferronato C, Salvador A, Yang X, Chovelon J-M (2013) Degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid by TiO2 photocatalysis: kinetics, photoproducts and comparison to structurally related compounds. Appl Catal B 140:457–467

    Article  Google Scholar 

  12. Gehlen MH (2020) The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J Photochem Photobiol, C: Photochem Rev 42:100338

    Article  CAS  Google Scholar 

  13. Al-Sharifi HK, Deepthi A (2023) Study on the mechanistic classes of fluorescence quenching of tryptanthrin-malononitrile adduct by aniline. Spectrochim Acta Part A Mol Biomol Spectrosc 303:123261

    Article  CAS  Google Scholar 

  14. Alam MZ, Alimuddin, Khan SA (2023) A review on Schiff base as a versatile fluorescent chemo-sensors tool for detection of Cu2+ and Fe3+ metal ion. J Fluoresc 33(1):1241–1272

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Chen Q, Sha T, Liu Y (2022) Significant promotion of light absorption ability and formation of triplet organics and reactive oxygen species in atmospheric HULIS by Fe (III) ions. Environ Sci Technol 56(23):16652–16664

    Article  CAS  PubMed  Google Scholar 

  16. Revanna BN, Madegowda M, Rangaswamy J, Naik N (2022) A novel Schiff base derivative as a fluorescent probe for selective detection of Cu2+ ions in buffered solution at pH 7.5: Experimental and quantum chemical calculations. J Mol Struct 1254:132327

    Article  CAS  Google Scholar 

  17. Christopher Leslee DB, Madheswaran B, Gunasekaran J, Karuppannan S, Kuppannan SB (2023) Iminobenzophenone-thiophen hydrazide schiff base: a selective turn on sensor for paramagnetic Fe3+ ion and application in real sample analysis. Photochem Photobiol Sci 22(8):1933–1943

    Article  CAS  PubMed  Google Scholar 

  18. Iftikhar R, Parveen I, Mazhar A, Iqbal MS, Kamal GM, Hafeez F, Pang AL, Ahmadipour M (2023) Small organic molecules as fluorescent sensors for the detection of highly toxic heavy metal cations in portable water. J Environ Chem Eng 11(1):109030

    Article  CAS  Google Scholar 

  19. Bilgiç A, Çimen A (2020) A highly sensitive and selective ON-OFF fluorescent sensor based on functionalized magnetite nanoparticles for detection of Cr (VI) metal ions in the aqueous medium. J Mol Liq 312:113398

    Article  Google Scholar 

  20. Lee YK, Hong S, Hur J (2021) Copper-binding properties of microplastic-derived dissolved organic matter revealed by fluorescence spectroscopy and two-dimensional correlation spectroscopy. Water Res 190:116775

    Article  CAS  PubMed  Google Scholar 

  21. Sekar A, Yadav R, Basavaraj N (2021) Fluorescence quenching mechanism and the application of green carbon nanodots in the detection of heavy metal ions: a review. New J Chem 45(5):2326–2360

    Article  CAS  Google Scholar 

  22. Chu Z-Y, Wang W-N, Zhang C-Y, Ruan J, Chen B-J, Xu H-M, Qian H-S (2019) Monitoring and removal of trace heavy metal ions via fluorescence resonance energy transfer mechanism: In case of silver ions. Chem Eng J 375:121927

    Article  CAS  Google Scholar 

  23. Mubeen M, Khalid MA, Gul T, Mukhtar M, Ul-Hamid A, Iqbal A (2022) Cu-enhanced efficient förster resonance energy transfer in PBSA sunscreen-associated ternary Cu x Cd1–x S quantum dots. ACS Omega 7(39):35014–35022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mubeen M, Khalid MA, Shahrum S, Mukhtar M, Sumreen P, Tabassum M, Ul-Hamid A, Nadeem MA, Iqbal A (2022) Exploring the photoexcited electron transfer dynamics in artificial sunscreen PBSA-coupled biocompatible ZnO quantum dots. New J Chem 46(20):9526–9533

    Article  CAS  Google Scholar 

  25. Mukhtar M, Bibi S, Erten Ela S, Yavuz C, Mubeen M, Sumreen P, Khalid MA, Ul-Hamid A, Iqbal A (2022) Photon-induced electron transfer in ligand-stabilized monoclinic CsPbBr 3 and alanine-functionalized graphene heterostructures. JPhysChemC 126(36):15298–15308

    CAS  Google Scholar 

  26. Rahardjo SB, Saraswati TE, Masykur A, Finantrena NN, Syaima H (2018) Synthesis and characterization of tetrakis (2-amino-3-methylpyridine) copper (II) sulfate tetrahydrate. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 349(1):012056

    Google Scholar 

  27. Mubeen M, Khalid MA, Mukhtar M, Sumreen P, Gul T, Ul Ain N, Shahrum S, Tabassum M, Ul-Hamid A, Iqbal A (2022) Elucidating the Size-dependent FRET Efficiency in Interfacially Engineered Quantum Dots Attached to PBSA Sunscreen. Photochem Photobiol 98(5):1017–1024

    Article  CAS  PubMed  Google Scholar 

  28. Mubeen M, Khalid MA, Mukhtar M, Shahrum S, Zahra S, Shabbir S, Iqbal A (2021) Elucidating the photoluminescence quenching in ensulizole: an artificial water soluble sunscreen. J Fluoresc 31(4):1055–1063

    Article  CAS  PubMed  Google Scholar 

  29. Nan Z, Hao C, Ye X, Feng Y, Sun R (2019) Interaction of graphene oxide with bovine serum albumin: A fluorescence quenching study. Spectrochim Acta Part A Mol Biomol Spectrosc 210:348–354

    Article  CAS  Google Scholar 

  30. Mariam J, Dongre P, Kothari D (2011) Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc 21:2193–2199

    Article  CAS  PubMed  Google Scholar 

  31. Rahimi Y, Goulding A, Shrestha S, Mirpuri S, Deo SK (2008) Mechanism of copper induced fluorescence quenching of red fluorescent protein, DsRed. Biochem Biophys Res Commun 370(1):57–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khalid MA, Mubeen M, Mukhtar M, Siddique Z, Sumreen P, Aydın F, Asil D, Iqbal A (2023) Probing the förster resonance energy transfer dynamics in colloidal donor-acceptor quantum dots assemblies. J Fluoresc 33(6):2523–2529

    Article  CAS  PubMed  Google Scholar 

  33. Ali A, Baheti V, Vik M, Militky J (2020) Copper electroless plating of cotton fabrics after surface activation with deposition of silver and copper nanoparticles. J Phys Chem Solids 137:109181

    Article  CAS  Google Scholar 

  34. Sharma A, Enderlein JR, Kumbhakar M (2017) Photon antibunching reveals static and dynamic quenching interaction of tryptophan with Atto-655. J Phys Chem Lett 8(23):5821–5826

    Article  CAS  PubMed  Google Scholar 

  35. Pal A, Srivastava S, Gupta R, Sapra S (2013) Electron transfer from CdSe–ZnS core–shell quantum dots to cobalt (III) complexes. Phys Chem Chem Phys 15(38):15888–15895

    Article  CAS  PubMed  Google Scholar 

  36. Kandagal P, Ashoka S, Seetharamappa J, Shaikh S, Jadegoud Y, Ijare OB (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal 41(2):393–399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful for the financial support of Higher Education Commission (HEC) Pakistan through the equipment/research grants 6976/Federal/NRPU/R&D/HEC/2017 and 20-3071/NRPU/R&D/HEC/13.

Funding

Higher Education Commision, Pakistan, 20 3071/NRPU/R&D/HEC/13.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study of conception and design. Muhammad Mubeen performed the experiments and wrote the initial draft of the manuscript. Muhammad Adnan Khalid, Maria Mukhtar, Poshmal Sumreen, Mamoona Tabassum, Shoaib Ashiq Butt, and Sheikh Aadil Abbas helped to conduct the experiments and data acquisition. Raheel Akram commented on the manuscript and revised it. Azhar Iqbal perceived the idea, acquired the funding, and supervised the work and writing of the manuscript.

Corresponding author

Correspondence to Azhar Iqbal.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubeen, M., Khalid, M.A., Mukhtar, M. et al. Elucidating the Mechanism of Copper-Induced Photoluminescence Quenching in 2-Phenylbenzimidazole-5-Sulfonic Acid. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03704-x

Keywords

Navigation