Skip to main content

Advertisement

Log in

Probing the Förster Resonance Energy Transfer Dynamics in Colloidal Donor-Acceptor Quantum Dots Assemblies

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this article, we report the synthesis of graphene quantum dots (GQDs) by hydrothermal method and surface modified CdS quantum dots (QDs) via the colloidal method and the fabrication of their dyad. The CdS QDs functionalized by mercaptoacetic acid (MAA) attach to the GQDs via electrostatic interactions. Spectral overlapping between the emission spectrum of GQDs and the absorption spectrum of CdS QDs allows efficient Förster resonance energy transfer (FRET) from GQDs to the CdS QDs in the GQDs-CdS QDs dyads. The magnitude of FRET efficiency (E) and the rate of energy transfer (kE) assessed by the photoluminescence (PL) decay kinetics are ~61.84% and ⁓3.8 × 108 s− 1, respectively. These high values of FRET efficiency and energy transfer rate can be assigned to the existence of strong electrostatic interactions between GQDs and CdS QDs, which arise due to the presence of polar functionalities on the surface of both GQDs and CdS QDs. The understanding of energy transfer in the luminescent donor-acceptor FRET system is of significant importance and the practical implications of such FRET systems could overall improve the efficiency of photovoltaics, sensing, imaging and optoelectronic devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included.

References

  1. Peng J, He Y, Zhou C, Su S, Lai B (2021) The carbon nanotubes-based materials and their applications for organic pollutant removal: a critical review. Chin Chem Lett 32:1626–1636

    Article  CAS  Google Scholar 

  2. Kim J, Park C, Song I, Lee M, Kim H, Choi HC (2016) Unique crystallization of fullerenes: fullerene flowers. Sci Rep 6:1–8

    CAS  Google Scholar 

  3. Yu X, Cheng H, Zhang M, Zhao Y, Qu L, Shi G (2017) Graphene-based smart materials. Nat Rev Mater 2:1–13

    Article  Google Scholar 

  4. Cao Q, He F, Li Y, He Z, Fan J, Wang R, Hu W, Zhang K, Yang W (2020) Graphene-carbon nanotube hybrid aerogel/polyethylene glycol phase change composite for thermal management. Fuller Nanotub Carbon Nanostructures 28:656–662

    Article  CAS  Google Scholar 

  5. Lai S, Jin Y, Shi L, Zhou R, Zhou Y, An D (2020) Mechanisms behind excitation-and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale 12:591–601

    Article  PubMed  CAS  Google Scholar 

  6. Lu G, Yu K, Wen Z, Chen J (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5:1353–1368

    Article  PubMed  CAS  Google Scholar 

  7. Li K, Liu W, Ni Y, Li D, Lin D, Su Z, Wei G (2017) Technical synthesis and biomedical applications of graphene quantum dots. J Mater Chem B 5:4811–4826

    Article  PubMed  CAS  Google Scholar 

  8. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  PubMed  CAS  Google Scholar 

  9. Zheng P, Wu N (2017) Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem Asian J 12:2343–2353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mehata MS, Biswas S (2021) Synthesis of fluorescent graphene quantum dots from graphene oxide and their application in fabrication of GQDs@ AgNPs nanohybrids and sensing of H2O2. Ceram. Int 47:19063–19072

    CAS  Google Scholar 

  11. Tsai KA, Hsu YJ (2015) Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Appl Catal B 164:271–278

    Article  CAS  Google Scholar 

  12. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732–1748

    Article  PubMed  CAS  Google Scholar 

  13. Min M, Sakri S, Saenz GA, Kaul AB (2021) Photophysical dynamics in semiconducting graphene quantum dots integrated with 2D MoS2 for optical enhancement in the near UV. ACS Appl Mater Interfaces 13:5379–5389

    Article  PubMed  CAS  Google Scholar 

  14. Ghosh D, Sarkar K, Devi P, Kim KH, Kumar P (2021) Current and future perspectives of carbon and graphene quantum dots: from synthesis to strategy for building optoelectronic and energy devices. Renew Sust Energ Rev 110391:1–19

    Google Scholar 

  15. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Quyet VL, Jang HW, Shokouhimehr M (2020) Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv 10:15406–15429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tabish TA, Scotton CJ, Ferguson DCJ, Lin L, Veen A, v der, Lowry S, Ali M, Jabeen F, Ali M, Winyard PG (2018) Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 13:1923–1937

    Article  PubMed  CAS  Google Scholar 

  17. Xue G, Zhiying M, Xiuying L, Lijun T, Jianrong L (2020) A fluorescence resonance energy transfer biosensor based on graphene quantum dots and protoporphyrin ix for the detection of melamine. J Fluoresc 30:1463–1468

    Article  PubMed  CAS  Google Scholar 

  18. Lin L, Rong M, Luo F, Chen D, Wang Y (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  19. Khalafallah D, Miao J, Zhi M, Hong Z (2021) Structuring graphene quantum dots anchored CuO for high-performance hybrid supercapacitors. J Taiwan Inst Chem Eng 122:168–175

    Article  CAS  Google Scholar 

  20. Kim J, Jang W, Kim JH, Yang CM (2021) Synthesis of graphene quantum dots-coated hierarchical CuO microspheres composite for use as binder-free anode for lithium-ion batteries. Compos B Eng 222:1090831–1090839

    Google Scholar 

  21. Gong L, Yang R, Liu R, Zou Y, Liu Y, Chen L, Yan Y, Xu Y (2021) Compounds, Chemical synthesis of dendritic interlaced network graphene quantum dots/sulfur composite for lithium-sulfur batteries. J Alloys Compd 855:1572781–1572787

    Article  Google Scholar 

  22. Mahalingam S, Manap A, Omar A, Low FW, Afandi NF, Chia CH, Rahim NA (2021) Functionalized graphene quantum dots for dye-sensitized solar cell: key challenges, recent developments and future prospects. Renew Sust Energ Rev 144:1109991–1109921

    Article  Google Scholar 

  23. Mansuriya BD, Altintas Z (2020) Applications of graphene quantum dots in biomedical sensors. Sensors 20:10721–10771

    Article  Google Scholar 

  24. Biswas MC, Islam MT, Nandy PK, Hossain MM (2021) Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: a review. ACS Mater Lett 3:889–911

    Article  CAS  Google Scholar 

  25. Iannazzo D, Celesti C, Espro C (2021) Recent advances on graphene quantum dots as multifunctional nanoplatforms for cancer treatment. Synth Syst Biotechnol 16:19004221–19004213

    Google Scholar 

  26. Lee W, Son HJ, Lee DK, Kim B, Kim H, Kim K, Ko MJ (2013) Suppression of photocorrosion in CdS/CdSe quantum dot-sensitized solar cells: formation of a thin polymer layer on the photoelectrode surface. Synth Met 165:60–63

    Article  CAS  Google Scholar 

  27. Sheng P, Li W, Cai J, Wang X, Tong X, Cai Q, Grimes C (2013) A novel method for the preparation of a photocorrosion stable core/shell CdTe/CdS quantum dot TiO 2 nanotube array photoelectrode demonstrating an AM 1.5 G photoconversion efficiency of 6.12%. J Mater Chem A 1:7806–7815

    Article  CAS  Google Scholar 

  28. He ZL, Yuan C, Gao H, Mou Z, Qian S, Zhai C, Lu C (2020) Significantly enhanced photoelectrocatalytic alcohol oxidation performance of CdS nanowire-supported pt via the “bridge” role of nitrogen-doped graphene quantum dots. ACS Sustain Chem Eng 8:12331–12341

    Article  CAS  Google Scholar 

  29. Mehata MS (2015) Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Sci Rep 5:1–11

    Article  Google Scholar 

  30. Bajorowicz B, Kobylański MP, Gołąbiewska A, Nadolna J, Zaleska-Medynska A, Malankowska A (2018) Quantum dot-decorated semiconductor micro-and nanoparticles: a review of their synthesis, characterization and application in photocatalysis. Adv Colloid Interface Sci 256:352–372

    Article  PubMed  CAS  Google Scholar 

  31. Guo W, Xu S, Wu Z, Wang N, Loy MMT, Du S (2013) Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Nanomicro Lett 9:3031–3036

    CAS  Google Scholar 

  32. Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z (2010) Aqueous-processable noncovalent chemically converted graphene–quantum dot composites for flexible and transparent optoelectronic films. Adv Mater 22:638–642

    Article  PubMed  CAS  Google Scholar 

  33. Zhang D, Gan L, Cao Y, Wang Q, Qi L, Guo X (2012) Understanding charge transfer at pbs-decorated graphene surfaces toward a tunable photosensor. Adv Mater 24:2715–2720

    Article  PubMed  CAS  Google Scholar 

  34. Sharma P, Mehata MS (2020) Colloidal MoS2 quantum dots based optical sensor for detection of 2, 4, 6-TNP explosive in an aqueous medium. Opt Mater 100:109646

    Article  CAS  Google Scholar 

  35. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  36. Swaminathan H, Ramar V, Balasubramanian K (2017) Excited-state electron and energy transfer dynamics between 2D MoS2 and GO/RGO for turn ON BSA/HSA sensing. J Phys Chem C 121:12585–12592

    Article  CAS  Google Scholar 

  37. Ramanarayanan R, Ummer FC, Swaminathan S (2020) Exploring dynamics of resonance energy transfer in hybrid Quantum dot sensitized Solar cells (QDSSC). Mater Res Express 7:0255171–0255111

    Article  Google Scholar 

  38. Javed H, Fatima K, Akhter Z, Nadeem MA, Siddiq M, Iqbal A (2016) Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches. Proc R Soc A 472:201506921–201506912

    Article  Google Scholar 

  39. Mubeen M, Khalid MA, Mukhtar M, Shahrum S, Zahra S, Shabbir S, Iqbal A (2021) Elucidating the photoluminescence quenching in Ensulizole: an artificial water soluble sunscreen. J Fluoresc 31:1055–1063

    Article  PubMed  CAS  Google Scholar 

  40. Saeed S, Iqbal A, Iqbal A (2020) Photoinduced charge carrier dynamics in a ZnSe quantum dot-attached CdTe system. Proc R Soc A 476:201906161–201906113

    Article  Google Scholar 

  41. Mubeen M, Khalid MA, Mukhtar M, Sumreen P, Gul T, Ain N, Shahrum S, Tabassum, Ul-Hamid A, Iqbal A (2022) Elucidating the size‐dependent FRET efficiency in Interfacially engineered quantum dots attached PBSA sunscreen. Photochem Photobiol 13599:1–8

    Google Scholar 

  42. Habibi M, Rahmati M (2014) Fabrication and characterization of ZnO@ CdS core–shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap. Acta A 133:13–18

    Article  CAS  Google Scholar 

  43. Vikraman AE, Jose AR, Jacob M, Kumar KG (2015) Thioglycolic acid capped CdS quantum dots as a fluorescent probe for the nanomolar determination of dopamine. Anal Methods 7:6791–6798

    Article  Google Scholar 

  44. Khan ZG, Patil PO (2022) Design and synthesis of poly-L-lysine-functionalized graphene quantum dots sensor for specific detection of cysteine and homocysteine. Mater Chem Phys 276:1253831–1253812

    Article  Google Scholar 

  45. Sinha R, Purkayastha P (2020) Daunomycin delivery by ultrasmall graphene quantum dots to DNA duplexes: understanding the dynamics by resonance energy transfer. J Mater Chem B 8:9756–9763

    Article  PubMed  CAS  Google Scholar 

  46. Dey S, Das S, Kar AK (2021) Role of precursor dependent nanostructures of ZnO on its optical and photocatalytic activity and influence of FRET between ZnO and methylene blue dye on photocatalysis. Mater Chem Phys 270:1248721–1248710

    Article  Google Scholar 

  47. Mubeen M, Khalid MA, Shahrum S, Mukhtar M, Sumreen P, Tabassum M, Hamid AUl, Nadeem MA, Iqbal A (2022) Exploring the photoexcited electron transfer dynamics in artificial sunscreen PBSA-coupled biocompatible ZnO quantum dots. New J Chem 46:9526–9533

    Article  CAS  Google Scholar 

  48. Shivkumar MA, Inamdar LS, Rabinal MHK, Mulimani BG, Rao GMA, Inamdar SR (2013) FRET from CdSe/ZnS core-shell quantum dots to fluorescein 27 dye. Open J Phys Chem 3:40–48

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful for the financial support of the Higher Education Commission (HEC) Pakistan through the equipment/research grants 6976/Federal/NRPU/R&D/HEC/2017 and 20-3071/NRPU/R&D/HEC/13.

Funding

This study was supported by Higher Education Commission (HEC) Pakistan through the equipment/research grants 6976/Federal/NRPU/R&D/HEC/2017 and 20-3071/NRPU/R&D/HEC/13.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study of conception and design. Muhammad Adnan Khalid performed the experiments and wrote the initial draft of the manuscript. Muhammad Mubeen, Maria Mukhtar, Zumaira Siddique, Poshmal Sumreen and Firdevs Aydın helped to conduct the experiments and data acquisition. Demet Asil commented on the manuscript and revised. Azhar Iqbal perceived the idea, acquired the funding and supervised the work and writing of the manuscript.

Corresponding author

Correspondence to Azhar Iqbal.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M.A., Mubeen, M., Mukhtar, M. et al. Probing the Förster Resonance Energy Transfer Dynamics in Colloidal Donor-Acceptor Quantum Dots Assemblies. J Fluoresc 33, 2523–2529 (2023). https://doi.org/10.1007/s10895-023-03301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03301-4

Keywords

Navigation