Skip to main content
Log in

A Dual-target Fluorescent Chemosensor for Detecting Indium (III) and Hypochlorite with High Selectivity

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A dual-target fluorescent chemosensor BQC (((E)-N-benzhydryl-2-(quinolin-2-ylmethylene)hydrazine-1-carbothioamide) was synthesized for detecting In3+ and ClO. BQC displayed green and blue fluorescence responses to In3+ and ClO with low detection limits (0.83 µM for In3+ and 2.50 µM for ClO), respectively. Importantly, BQC is the first fluorescent chemosensor capable of detecting In3+ and ClO. The binding ratio between BQC and In3+ was determined to be a 2:1 through Job plot and ESI-MS analysis. BQC could be successfully utilized as a visible test kit to detect In3+. Meanwhile, BQC showed a selective turn-on response to ClO even in the presence of anions or reactive oxygen species. The sensing mechanisms of BQC for In3+ and ClO were demonstrated by 1 H NMR titration, ESI-MS and theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

Data Availability

Nor applicable.

References

  1. Licht C, Peiró LT, Villalba G (2015) Global substance Flow Analysis of Gallium, Germanium, and Indium: quantification of extraction, uses, and dissipative losses within their anthropogenic cycles. J Ind Ecol 19:890–903

    Article  Google Scholar 

  2. Lee SC, Kim C (2020) A thiourea-naphthol based turn-on fluorescent sensor for detecting In3+ and its application. Inorg Chem Commun 112:107752

    Article  CAS  Google Scholar 

  3. Xu Y, Yuan S, Zhang Y et al (2020) A new multifunctional sensor for sequential recognizing of Zn2+ and PPi in acetonitrile solution and detection of In3+ in DMF solution. J Photochem Photobiol A Chem 392:112348

    Article  CAS  Google Scholar 

  4. Alfantazi AM, Moskalyk RR (2003) Processing of indium: a review. Min Eng 16:687–694

    Article  CAS  Google Scholar 

  5. Zhang K, Wu Y, Wang W et al (2015) Recycling indium from waste LCDs: a review. Resour Conserv Recycl 104:276–290

    Article  CAS  Google Scholar 

  6. Xing Y, Liu Z, Xu Y et al (2020) Double Schiff base from thiophene-2,5-dicarboxylic acid as an “off–on–off” fluorescence sensor for the sequential detection of In3+ and PPi. New J Chem 44:13875–13881

    Article  CAS  Google Scholar 

  7. Moshtaghie AA, Ghaffari MA (2003) Study of the binding of Iron and Indium to Human serum apo-transferrin. Iran Biomed J 7:73–77

    CAS  Google Scholar 

  8. Kho YM, Shin EJ (2017) Spiropyran-Isoquinoline Dyad as a dual Chemosensor for Co(II) and in(III) detection. Molecules 22:1569

    Article  PubMed  PubMed Central  Google Scholar 

  9. Finelli A, Chabert V, Hérault N et al (2019) Sequential multiple-target sensor: In3+, Fe2+, and Fe3+ discrimination by an anthracene-based probe. Inorg Chem 58:13796–13806

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Li B (2022) A multifunctional selective fluorescent chemosensor for detection of Ga3+, In3+ and Fe3+ in different solvents. J Mol Struct 1250:131461

    Article  CAS  Google Scholar 

  11. Han DY, Kim JM, Kim J et al (2010) ESIPT-based anthraquinonylcalix[4]crown chemosensor for In3+. Tetrahedron Lett 51:1947–1951

    Article  CAS  Google Scholar 

  12. Lam PL, Wong RSM, Lam KH et al (2020) The role of reactive oxygen species in the biological activity of antimicrobial agents: an updated mini review. Chem Biol Interact 320:109023

    Article  CAS  PubMed  Google Scholar 

  13. Ma C, Hou S, Zhou X et al (2021) Rational design of Meso-Phosphino-Substituted BODIPY Probes for Imaging Hypochlorite in living cells and mice. Anal Chem 93:9640–9646

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Huang Y, Huo F et al (2022) A green method for the synthesis of coumarin dye and its application to hypochlorite recognition. Dyes Pigm 201:110223

    Article  CAS  Google Scholar 

  15. Zhao Q, Jiang H, Tang B et al (2021) Chemosensor-Anchored Halloysite Nanotubes for detection and removal of Hypochlorite in Water. ACS Appl Nano Mater 4:7435–7442

    Article  CAS  Google Scholar 

  16. He X, Deng Z, Xu W et al (2020) A novel dual-response chemosensor for bioimaging of Exogenous/Endogenous hypochlorite and hydrazine in living cells, Pseudomonas aeruginosa and zebrafish. Sens Actuators B Chem 321:128450

    Article  CAS  Google Scholar 

  17. Wu D, Chen L, Xu Q et al (2019) Design principles, sensing mechanisms, and applications of highly specific fluorescent probes for HOCl/OCl. Acc Chem Res 52:2158–2168

    Article  CAS  PubMed  Google Scholar 

  18. Jung JM, Kang JH, Han J et al (2018) A novel “off-on” type fluorescent chemosensor for detection of Zn2+ and its zinc complex for “on-off” fluorescent sensing of sulfide in aqueous solution, in vitro and in vivo. Sens Actuators B Chem 267:58–69

    Article  CAS  Google Scholar 

  19. Shivaprasad M, Govindaraju T (2011) Rhodamine based bright red colourimetric and turn-on fluorescence chemosensor for selective detection of Cu2+. Mater Technol 26:168–172

    Article  ADS  CAS  Google Scholar 

  20. Kim JK, Bong SY, Park R et al (2022) An ESIPT-based fluorescent turn-on probe with isothiocyanate for detecting hydrogen sulfide in environmental and biological systems. Spectrochim Acta A Mol Biomol Spectrosc 278:121333

    Article  CAS  PubMed  Google Scholar 

  21. Chan WC, Saad HM, Sim KS et al (2022) A rapid turn-on dual functional rhodamine B probe for aluminum (III) and copper (II) that can be utilised as a molecular logic gate and in water analysis. J Mol Struct 1254:132337

    Article  CAS  Google Scholar 

  22. Ma XQ, Wang Y, Wei TB et al (2019) A novel AIE chemosensor based on quinoline functionalized Pillar[5]arene for highly selective and sensitive sequential detection of toxic Hg2+ and CN. Dyes Pigm 164:279–286

    Article  CAS  Google Scholar 

  23. Helal A, Kim HS (2009) Thiazole-based chemosensor: synthesis and ratiometric fluorescence sensing of zinc. Tetrahedron Lett 50:5510–5515

    Article  CAS  Google Scholar 

  24. Kang JH, Kim C (2018) Colorimetric detection of iron and fluorescence detection of zinc and cadmium by a chemosensor containing a bio-friendly octopamine. Photochem Photobiol Sci 17:442–452

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Yang F, Wei K et al (2023) 5-(Thiophene-2-yl)oxazole derived “off-on-off” fluorescence chemosensor for sequential recognition of In3+ and Cr3+ ions. J Photochem Photobiol A Chem 437:114464

    Article  CAS  Google Scholar 

  26. Mujthaba Aatif A, Selva Kumar R, Joseph S et al (2023) Pyridinecarbohydrazide-based fluorescent chemosensor for In3+ ions and its applications in water samples, live cells, and zebrafish imaging. J Photochem Photobiol A Chem 434:114257

    Article  CAS  Google Scholar 

  27. Yang M, Lee JJ, Yun D et al (2023) In vitro and vivo application of a rhodanine-based fluorescence sensor for detection and bioimaging of In3+ at neutral pH. J Photochem Photobiol A Chem 434:114249

    Article  CAS  Google Scholar 

  28. Mehta PK, Hwang GW, Park J, Lee KH (2018) Highly sensitive Ratiometric fluorescent detection of Indium(III) using fluorescent probe based on Phosphoserine as a receptor. Anal Chem 90:11256–11264

    Article  CAS  PubMed  Google Scholar 

  29. Sung KK, Su HK, Hyun JK et al (2005) Indium(III)-induced fluorescent excimer formation and extinction in calix[4]arene-fluoroionophores. Inorg Chem 44:7866–7875

    Article  Google Scholar 

  30. Wang Y, Ding F, Sun X et al (2021) A reaction-based colorimetric and ratiometric chemosensor for imaging identification of HClO in live cells, mung bean sprouts, and paper strips. Talanta 234:122655

    Article  CAS  PubMed  Google Scholar 

  31. Yu SY, Hsu CY, Chen WC et al (2014) A hypochlorous acid turn-on fluorescent probe based on HOCl-promoted oxime oxidation and its application in cell imaging. Sens Actuators B Chem 196:203–207

    Article  CAS  Google Scholar 

  32. Pan D, Don Y, Lu Y et al (2022) AIE fluorescent probe based on tetraphenylethylene and morpholine-thiourea structures for detection of HClO. Anal Chim Acta 1235:340559

    Article  CAS  PubMed  Google Scholar 

  33. Karuk Elmas SN (2022) A coumarin-based fluorescence chemosensor for the determination of Al3+ and ClO with different fluorescence emission channels. Inorg Chim Acta 537:120953

    Article  CAS  Google Scholar 

  34. Nural Y, Karasu E, Keleş E et al (2022) Synthesis of novel acylthioureas bearing naphthoquinone moiety as dual sensor for high-performance naked-eye colorimetric and fluorescence detection of CN and F ions and its application in water and food samples. Dyes Pigm 198:110006

    Article  CAS  Google Scholar 

  35. Kim C, Chae JB (2018) A highly selective fluorescent Chemosensor for detecting Indium(III) with a low detection limit and its application. J Fluoresc 28:1363–1370

    Article  CAS  PubMed  Google Scholar 

  36. So H, Cho H, Lee H et al (2020) Detection of zinc (II) and hypochlorite by a thiourea-based chemosensor via two emission channels and its application in vivo. Microchem J 155:104788

    Article  CAS  Google Scholar 

  37. Lee SC, Park S, So H et al (2020) An acridine-based fluorescent sensor for monitoring ClO in Water samples and zebrafish. Sensors 20:4764

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaji LK, Kumar SKA (2022) A quinoline–benzothiazole-based chemosensor coupled with a smartphone for the rapid detection of In3+ ions. Anal Methods 14:620–626

    Article  CAS  PubMed  Google Scholar 

  39. Ding Y, Zhao C, Zhang P et al (2021) A novel quinoline derivative as dual chemosensor for selective sensing of Al3+ by fluorescent and Fe2+ by colorimetric methods. J Mol Struct 1231:129965

    Article  CAS  Google Scholar 

  40. Lee M, Lee JJ, Kim C (2022) Sensitive fluorescent determination of indium (III) by a thiourea–quinoline-based chemosensor. Instrum Sci Technol 50:481–495

    Article  CAS  Google Scholar 

  41. Kim A, Kim C (2019) A hydrazono-quinoline-based chemosensor sensing In3+ and Zn2+: Via fluorescence turn-on and ClO via color change in aqueous solution. New J Chem 43:7320–7328

    Article  CAS  Google Scholar 

  42. Yang R, Li K, Wang K et al (2003) Porphyrin assembly on β-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Anal Chem 75:612–621

    Article  CAS  PubMed  Google Scholar 

  43. Shao N, Zhang Y, Cheung SM et al (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77:7294–7303

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16. Gaussian Inc., Wallingford, CT

    Google Scholar 

  45. Becke AD (1998) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  ADS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  ADS  CAS  Google Scholar 

  47. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  48. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. J Chem Phys 77:3654–3665

    Article  ADS  CAS  Google Scholar 

  49. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms sc to hg. J Chem Phys 82:270–283

    Article  ADS  CAS  Google Scholar 

  50. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements na to Bi. J Chem Phys 82:284–298

    Article  ADS  CAS  Google Scholar 

  51. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  ADS  CAS  Google Scholar 

  52. Klamt A, Moya C, Palomar J (2015) A Comprehensive comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. J Chem Theory Comput 11:4220–4225

    Article  CAS  PubMed  Google Scholar 

  53. Nootem J, Daengngern R, Sattayanon C et al (2021) The synergy of CHEF and ICT toward fluorescence ‘turn-on’ probes based on push-pull benzothiazoles for selective detection of Cu2+ in acetonitrile/water mixture. J Photochem Photobiol A Chem 415:113318

    Article  CAS  Google Scholar 

  54. Sun J, Li Y, Shen S et al (2020) A squaraine-based fluorescence turn on chemosensor with ICT character for highly selective and sensitive detection of Al3+ in aqueous media and its application in living cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 228:117590

    Article  CAS  PubMed  Google Scholar 

  55. Al-Saidi HM, Khan S (2022) Recent advances in Thiourea based colorimetric and fluorescent chemosensors for detection of Anions and Neutral Analytes: a review. Crit Rev Anal Chem 1–17

  56. Sahu S, Sikdar Y, Bag R et al (2019) Visual detection of fluoride ion based on ICT mechanism. Spectrochim Acta A Mol Biomol Spectrosc 213:354–360

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Man LL, Li SZ, Zhang J et al (2023) A new single-armed salamo-based sensor with aggregation-induced emission characteristic for selective sensing of aluminium ions. J Photochem Photobiol A Chem 437:114433

    Article  CAS  Google Scholar 

  58. Dey S, Paul S, Debsharma K, Sinha C (2021) A highly emissive zn(ii)-pyridyl-benzimidazolyl-phenolato-based chemosensor: detection of H2PO4 via “use” and “throw” device fabrication. Anal Methods 13:5282–5292

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Research Foundation of Korea (NRF-2020R1A6A1A0304274211) and Seoul National University of Science and Technology (SNUT).

Author information

Authors and Affiliations

Authors

Contributions

Z. Duo: Investigation and Original draft preparation; D. Gil: Discussion, Reviewing and Editing.; C. Kim: Discussion, Supervision, Reviewing and Editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dongkyun Gil or Cheal Kim.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Gil, D. & Kim, C. A Dual-target Fluorescent Chemosensor for Detecting Indium (III) and Hypochlorite with High Selectivity. J Fluoresc 34, 743–753 (2024). https://doi.org/10.1007/s10895-023-03326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03326-9

Keywords

Navigation