Skip to main content
Log in

A Highly Selective Fluorescent Chemosensor for Detecting Indium(III) with a Low Detection Limit and its Application

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A highly selective chemosensor BHC ((E)-N-benzhydryl-2-((2-hydroxynaphthalen-1-yl)methylene)hydrazine-1-carbothioamide) for detecting indium(III) was synthesized. Sensor BHC can detect In(III) by a fluorescence turn-on method. The detection limit was analyzed to be 0.89 μM. Importantly, this value is the lowest among those previously known for fluorescent turn-on In(III) chemosensors. Based on the analytical methods like ESI-mass, Job plot, and theoretical calculations, the detection mechanism for In(III) was illustrated to be chelation-enhanced fluorescence (CHEF) effect. Additionally, sensor BHC was successfully applied to test strips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asami T, Yoshino A, Kubota M, Gotoh S (1990) Background level of indium and gallium in soil with special reference to the pollution of the soils from zinc and lead smelters. J Plant Nutr Soil Sci 153:257–259

    CAS  Google Scholar 

  2. Kho YM, Shin EJ (2017) Spiropyran-isoquinoline dyad as a dual chemosensor for Co(II) and In(III) detection. Molecules 22

  3. Chen HW (2006) Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bull Environ Contam Toxicol 77:289–296

    Article  CAS  Google Scholar 

  4. Han DY, Kim JM, Kim J, Jung HS, Lee YH, Zhang JF, Kim JS (2010) ESIPT-based anthraquinonylcalix[4]crown chemosensor for In3+. Tetrahedron Lett 51:1947–1951

    Article  CAS  Google Scholar 

  5. Wu Y-C, Li H-J, Yang H-Z (2010) A sensitive and highly selective fluorescent sensor for In3+. Org Biomol Chem 8:3394–3397

    Article  CAS  Google Scholar 

  6. Kim SK, Kim HS, Kim JH, Lee SH, Lee SW, Ko J, Bartsch RA, Kim JS (2005) indium(III)-induced fluorescent excimer formation and extinction in calix[4]arene-fluoroionophores. Inorg Chem 44:7866–7875

    Article  CAS  Google Scholar 

  7. Kim H, Kim KB, Song EJ, Hwang IH, Noh JY, Kim PG, Jeong KD, Kim C (2013) Turn-on selective fluorescent probe for trivalent cations. Inorg Chem Commun 36:72–76

    Article  CAS  Google Scholar 

  8. Acar O, Türker AR, Kılıç Z (1998) Determination of bismuth, indium and lead in geological samples by electrothermal AAS. Fresenius J Anal Chem 360:645–649

    Article  CAS  Google Scholar 

  9. Gęca I, Korolczuk M (2017) Sensitive anodic stripping Voltammetric determination of indium(III) traces following double deposition and stripping steps. J Electrochem Soc 164:H183–H187

    Article  Google Scholar 

  10. Adya VC, Kumar M, Sengupta A, Natarajan V (2015) Inductively coupled plasma atomic emission spectrometric determination of indium (In) and gallium (Ga) in thorium matrix after chemical separation using Cyanex 923 extractant. At Spectrosc 36:261–265

    CAS  Google Scholar 

  11. Tehrani MH, Companys E, Dago A, Puy J, Galceran J (2018) Free indium concentration determined with AGNES. Sci Total Environ 612:269–275

    Article  CAS  Google Scholar 

  12. Lee JJ, Park GJ, Kim YS, Lee SY, Lee JH, Noh I, Kim C (2015) A water-soluble carboxylic-functionalized chemosensor for detecting Al3+ in aqueous media and living cells: experimental and theoretical studies. Biosens Bioelectron 69:226–229

    Article  Google Scholar 

  13. He G, Meng Q, Zhao X, He C, Zhou P, Duan C (2016) A new copper(II) selective fluorescence probe based on naphthalimide: synthesis, mechanism and application in living cells. Inorg Chem Commun 65:28–31

    Article  CAS  Google Scholar 

  14. Park GJ, Lee JJ, You GR, Nguyen L, Noh I, Kim C (2016) A dual chemosensor for Zn2+ and Co2+ in aqueous media and living cells: experimental and theoretical studies. Sensors Actuators B Chem 223:509–519

    Article  CAS  Google Scholar 

  15. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123

    Article  CAS  Google Scholar 

  16. Ghosh P, Banerjee P (2017) Small molecular probe as selective tritopic sensor of Al3+, F and TNP: fabrication of portable prototype for onsite detection of explosive TNP. Anal Chim Acta 965:111–122

    Article  CAS  Google Scholar 

  17. Huang L, Zhang J, Yu X, Ma Y, Huang T, Shen X, Qiu H, He X, Yin S (2015) A Cu2+-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate. Spectrochim Acta A 145:25–32

    Article  CAS  Google Scholar 

  18. Lim C, An M, Seo H, Huh JH, Pandith A, Helal A, Kim HS (2017) Fluorescent probe for sequential recognition of Ga3+ and pyrophosphate anions. Sensors Actuators B Chem 241:789–799

    Article  CAS  Google Scholar 

  19. Kim DH, Im YS, Kim H, Kim C (2014) Solvent-dependent selective fluorescence sensing of Al3+ and Zn2+ using a single Schiff base. Inorg Chem Commun 45:15–19

    Article  CAS  Google Scholar 

  20. Maity D, Govindaraju T (2011) Naphthaldehyde-urea/Thiourea conjugates as turn-on fluorescent probes for Al3+ based on restricted C=N isomerization. Eur J Inorg Chem 2011:5479–5485

    Article  CAS  Google Scholar 

  21. Goswami S, Manna A, Paul S, Maity AK, Saha P, Quah CK, Fun H-K (2014) FRET based ‘red-switch’ for Al3+ over ESIPT based ‘green-switch’ for Zn2+ : dual channel detection with live-cell imaging on a dyad platform. RSC Adv 4:34572–34576

    Article  CAS  Google Scholar 

  22. Jang HJ, Kang JH, Yun D, Kim C (2018) A multifunctional selective “turn-on” fluorescent chemosensor for detection of group IIIA ions Al3+, Ga3+ and In3+. Photochem Photobiol Sci 17:1247–1255. https://doi.org/10.1039/C8PP00171E

    Article  CAS  PubMed  Google Scholar 

  23. Hu J-H, Li J-B, Sun Y, Pei P-X, Qi J (2017) A turn-on fluorescent chemosensor based on acylhydrazone for sensing of Mg2+ with a low detection limit. RSC Adv 7:29697–29701

    Article  CAS  Google Scholar 

  24. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327–334

    Article  CAS  Google Scholar 

  25. Long L, Huang M, Wang N, Wu Y, Wang K, Gong A, Zhang Z, Sessler JL (2018) A mitochondria-specific fluorescent probe for visualizing endogenous hydrogen cyanide fluctuations in neurons. J Am Chem Soc 140:1870–1875

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford CT

    Google Scholar 

  27. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  30. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  31. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  32. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  33. Lee SY, Bok KH, Kim C (2017) A fluorescence “turn-on” chemosensor for Hg2+ and ag+ based on NBD (7-nitrobenzo-2-oxa-1,3-diazolyl). RSC Adv 7:290–299

    Article  CAS  Google Scholar 

  34. Vincenzo B, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem 102:1995–2001

    Article  Google Scholar 

  35. Maurizio C, Vincenzo B (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  Google Scholar 

  36. McNaught AD, Wilkinson A (1997) Limit of detection in analysis. IUPAC Compendium of Chemical Terminololy, 2nd edn. (the “Gold Book”) Blackwell Scientific Publications, Oxford

  37. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  38. Goswami S, Aich K, Das S, Das Mukhopadhyay C, Sarkar D, Mondal TK (2015) A new visible-light-excitable ICT-CHEF-mediated fluorescence ‘turn-on’ probe for the selective detection of Cd2+ in a mixed aqueous system with live-cell imaging. Dalton Trans 44:5763–5770

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of Korea (NRF) (NRF-2018R1A2B6001686) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Electronic supplementary material

ESM 1

(DOCX 1037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Chae, J.B. A Highly Selective Fluorescent Chemosensor for Detecting Indium(III) with a Low Detection Limit and its Application. J Fluoresc 28, 1363–1370 (2018). https://doi.org/10.1007/s10895-018-2299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2299-z

Keywords

Navigation