Skip to main content

Advertisement

Log in

A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Rhodamine-based chemosensors have sparked considerable interest in recent years due to their remarkable photophysical properties, which include high absorption coefficients, exceptional quantum yields, improved photostability, and significant red shifts. This article presents an overview of the diverse fluorometric, and colorimetric sensors produced from rhodamine, as well as their applications in a wide range of fields. The ability of rhodamine-based chemosensors to detect a wide range of metal ions, including Hg+2, Al3+, Cr3+, Cu2+, Fe3+, Fe2+, Cd2+, Sn4+, Zn2+, and Pb2+, is one of their major advantages. Other applications of these sensors include dual analytes, multianalytes, and relay recognition of dual analytes. Rhodamine-based probes can also detect noble metal ions such as Au3+, Ag+, and Pt2+. They have been used to detect pH, biological species, reactive oxygen and nitrogen species, anions, and nerve agents in addition to metal ions. The probes have been engineered to undergo colorimetric or fluorometric changes upon binding to specific analytes, rendering them highly selective and sensitive by ring-opening via different mechanisms such as Photoinduced Electron Transfer (PET), Chelation Enhanced Fluorescence (CHEF), Intramolecular Charge Transfer (ICT), and Fluorescence Resonance Energy Transfer (FRET). For improved sensing performance, light-harvesting dendritic systems based on rhodamine conjugates has also been explored for enhanced sensing performance. These dendritic arrangements permit the incorporation of numerous rhodamine units, resulting in an improvement in signal amplification and sensitivity. The probes have been utilised extensively for imaging biological samples, including imaging of living cells, and for environmental research. Moreover, they have been combined into logic gates for the construction of molecular computing systems. The usage of rhodamine-based chemosensors has created significant potential in a range of disciplines, including biological and environmental sensing as well as logic gate applications. This study focuses on the work published between 2012 and 2021 and emphasises the enormous research and development potential of these probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91
Fig. 92
Fig. 93
Fig. 94
Fig. 95
Fig. 96
Fig. 97
Fig. 98
Fig. 99
Fig. 100
Fig. 101
Fig. 102
Fig. 103
Fig. 104
Fig. 105
Fig. 106
Fig. 107
Fig. 108
Fig. 109
Fig. 110
Fig. 111
Fig. 112
Fig. 113
Fig. 114
Fig. 115
Fig. 116
Fig. 117
Fig. 118
Fig. 119
Fig. 120
Fig. 121
Fig. 122
Fig. 123
Fig. 124
Fig. 125
Fig. 126
Fig. 127
Fig. 128
Fig. 129
Fig. 130
Fig. 131
Fig. 132
Fig. 133
Fig. 134
Fig. 135
Fig. 136
Fig. 137
Fig. 138
Fig. 139
Fig. 140
Fig. 141
Fig. 142
Fig. 143
Fig. 144
Fig. 145
Fig. 146
Fig. 147
Fig. 148
Fig. 149
Fig. 150
Fig. 151
Fig. 152
Fig. 153
Fig. 154
Fig. 155
Fig. 156
Fig. 157
Fig. 158
Fig. 159
Fig. 160
Fig. 161
Fig. 162
Fig. 163
Fig. 164
Fig. 165
Fig. 166
Fig. 167
Fig. 168
Fig. 169
Fig. 170
Fig. 171
Fig. 172
Fig. 173
Fig. 174
Fig. 175
Fig. 176
Fig. 177
Fig. 178
Fig. 179
Fig. 180
Fig. 181
Fig. 182
Fig. 183

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AAS:

Atomic Absorption Spectroscopy

ADP:

Adenosine Diphosphate

AFM:

Atomic Force Microscopy

AMP:

Adenosine Monophosphate

BR:

Britton-Robinson

CHEF:

Chelation Induced Enhanced Fluorescence

Cys:

Cysteine

DCP:

Diethyl chlorophosphate

EDTA:

Ethylenediamine tetraacetic acid

ESI-MS:

Electron spray ionisation Mass Spectrometry

FRET:

Forster Resonance Energy Transfer

GSH:

Glutathione

Hcy:

Homocysteine

HEPES:

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid)

ICP-AES:

Inductively Coupled Plasma Atomic Emission Spectrometry

ICP-MS:

Inductively Coupled Plasma Mass Spectrometry

ICT:

Intramolecular Charge Transfer

IR:

Infra-red

KCN:

Potassium cyanide

LOD:

Limit of Detection

NMR:

Nuclear Magnetic Resonance

NIR:

Near Infra-red

PET:

Photoinduced Electron Transfer

TD-DFT:

Time-dependent Density Functional Theory

TBACN:

Tetrabutyl ammonium cyanide

TBAI:

Tetrabutyl ammonium iodide

TFA:

Trifluoroacetic acid

UV/Vis:

Ultraviolet- Visible

PTA:

Phosphotungstic acid

PAMAM:

-Polyamidoamines

References

  1. Chen X, Pradhan T, Wang F et al (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956. https://doi.org/10.1021/cr200201z

    Article  CAS  PubMed  Google Scholar 

  2. Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc 119:7386–7387. https://doi.org/10.1021/ja971221g

    Article  CAS  Google Scholar 

  3. Kim HN, Lee MH, Kim HJ et al (2008) A new trend in rhodamine-based chemosensors: Application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472. https://doi.org/10.1039/b802497a

    Article  CAS  PubMed  Google Scholar 

  4. Moon H, Park J, Tae J (2016) Fluorescent probes based on rhodamine hydrazides and hydroxamates. Chem Rec 16:124–140. https://doi.org/10.1002/tcr.201500226

    Article  CAS  PubMed  Google Scholar 

  5. Carta CL (2014) The effects of medium on the UV-induced photodegradation of the effects of medium on the UV-induced photodegradation of rhodamine B Dye Rhodamine B Dye. https://doi.org/10.21220/s2-pvy5-9w91

  6. Wang L, Du W, Hu Z et al (2019) Hybrid rhodamine fluorophores in the Visible/NIR region for biological imaging. Angew Chemie - Int Ed 58:14026–14043. https://doi.org/10.1002/anie.201901061

    Article  CAS  Google Scholar 

  7. Chi W, Qi Q, Lee R et al (2020) A unified push–pull model for understanding the ring-opening mechanism of rhodamine dyes. J Phys Chem C 124:3793–3801

    Article  CAS  Google Scholar 

  8. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433. https://doi.org/10.1039/b901612k

    Article  CAS  PubMed  Google Scholar 

  9. Li N, Liu M, Yin W et al (2011) Recent progress in rhodamine-based “OFF-ON” fluorescent probes. Chinese J Org Chem 31:39–53

    Google Scholar 

  10. Choudhury N, De P (2021) Recent progress in pendant rhodamine-based polymeric sensors for the detection of copper, mercury and iron ions. J Macromol Sci Part A Pure Appl Chem 58:835–848. https://doi.org/10.1080/10601325.2021.1960172

    Article  CAS  Google Scholar 

  11. Bai CB, Wang WG, Zhang J et al (2020) A fluorescent and colorimetric chemosensor for Hg2+ based on rhodamine 6G with a two-step reaction mechanism. Front Chem 8:1–7. https://doi.org/10.3389/fchem.2020.00014

    Article  CAS  Google Scholar 

  12. Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192. https://doi.org/10.1016/j.ccr.2011.09.010

    Article  CAS  Google Scholar 

  13. Dongare PR, Gore AH (2021) Recent advances in colorimetric and fluorescent chemosensors for ionic species: design, principle and optical signalling mechanism. ChemistrySelect 6:5657–5669. https://doi.org/10.1002/slct.202101090

    Article  CAS  Google Scholar 

  14. Sharma S, Ghosh KS (2021) Recent advances (2017–20) in the detection of copper ion by using fluorescence sensors working through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Förster resonance energy (FRET). Spectrochim Acta - Part A Mol Biomol Spectrosc 254:119610. https://doi.org/10.1016/j.saa.2021.119610

    Article  CAS  Google Scholar 

  15. Suganya S, Naha S, Velmathi S (2018) A critical review on colorimetric and fluorescent probes for the sensing of analytes via relay recognition from the year 2012–17. ChemistrySelect 3:7231–7268. https://doi.org/10.1002/slct.201801222

    Article  CAS  Google Scholar 

  16. Hazra S, Balaji S, Banerjee M et al (2014) A PEGylated-rhodamine based sensor for “turn-on” fluorimetric and colorimetric detection of Hg2+ ions in aqueous media. Anal Methods 6:3784–3790. https://doi.org/10.1039/c4ay00265b

    Article  CAS  Google Scholar 

  17. Bera K, Das AK, Nag M, Basak S (2014) Development of a rhodamine-rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae. Anal Chem 86:2740–2746. https://doi.org/10.1021/ac404160v

    Article  CAS  PubMed  Google Scholar 

  18. Mao Y, Hong M, Liu A, Xu D (2015) Highly selective and sensitive detection of Hg(II) from HgCl2 by a simple rhodamine-based fluorescent sensor. J Fluoresc 25:755–761. https://doi.org/10.1007/s10895-015-1564-7

    Article  CAS  PubMed  Google Scholar 

  19. Fang Y, Zhou Y, Li JY et al (2015) Naphthalimide-Rhodamine based chemosensors for colorimetric and fluorescent sensing Hg2+ through different signaling mechanisms in corresponding solvent systems. Sensors Actuators B Chem 215:350–359. https://doi.org/10.1016/j.snb.2015.03.080

    Article  CAS  Google Scholar 

  20. Arivazhagan C, Borthakur R, Ghosh S (2015) Ferrocene and Triazole-appended rhodamine based multisignaling sensors for Hg2+ and their application in live cell imaging. Organometallics 34:1147–1155. https://doi.org/10.1021/om500948c

    Article  CAS  Google Scholar 

  21. Li L, Fang Z (2015) A novel “turn on” glucose-based rhodamine B fluorescent chemosensor for mercury ions recognition in aqueous solution. Spectrosc Lett 48:578–585. https://doi.org/10.1080/00387010.2014.933354

    Article  CAS  Google Scholar 

  22. Erdemir S, Kocyigit O, Malkondu S (2015) Detection of Hg2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole-rhodamine. J Photochem Photobiol A Chem 309:15–21. https://doi.org/10.1016/j.jphotochem.2015.04.017

    Article  CAS  Google Scholar 

  23. Hong MM, Liu AF, Xu Y, Xu DM (2016) Synthesis and properties of three novel rhodamine-based fluorescent sensors for Hg2+. Chinese Chem Lett 27:989–992. https://doi.org/10.1016/j.cclet.2016.03.027

    Article  CAS  Google Scholar 

  24. Li D, Li CY, Li YF et al (2016) Rhodamine-based chemodosimeter for fluorescent determination of Hg2+ in 100% aqueous solution and in living cells. Anal Chim Acta 934:218–225. https://doi.org/10.1016/j.aca.2016.05.050

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Li Y, Zhong W et al (2016) A highly selective fluorescent and colorimetric chemosensor for Hg2+ based on a new rhodamine derivative. Anal Methods 8:1964–1967. https://doi.org/10.1039/c5ay03281d

    Article  CAS  Google Scholar 

  26. Jiao Y, Zhang L, Zhou P (2016) A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection. Talanta 150:14–19. https://doi.org/10.1016/j.talanta.2015.11.065

    Article  CAS  PubMed  Google Scholar 

  27. Hong M, Lu X, Chen Y, Xu D (2016) A novel rhodamine-based colorimetric and fluorescent sensor for Hg2+ in water matrix and living cell. Sensors Actuators B Chem 232:28–36. https://doi.org/10.1016/j.snb.2016.03.125

    Article  CAS  Google Scholar 

  28. Venkatesan P, Thirumalivasan N, Wu SP (2017) A rhodamine-based chemosensor with diphenylselenium for highly selective fluorescence turn-on detection of Hg2+: In vitro and in vivo. RSC Adv 7:21733–21739. https://doi.org/10.1039/c7ra02459b

    Article  CAS  Google Scholar 

  29. Liu C, Xiao T, Wang Y et al (2017) Rhodamine based turn-on fluorescent sensor for Hg2+ and its application of microfluidic system and bioimaging. Tetrahedron 73:5189–5193. https://doi.org/10.1016/j.tet.2017.07.012

    Article  CAS  Google Scholar 

  30. Du W, Cheng Y, Shu W et al (2017) The influences of different substituents on spectral properties of rhodamine B based chemosensors for mercury ion and application in EC109 cells. Can J Chem 95:751–757. https://doi.org/10.1139/cjc-2017-0017

    Article  CAS  Google Scholar 

  31. Du W, Cheng Y, Shu W, Qi Z (2017) A novel rhodamine-based fluorescence chemosensor containing polyether for mercury (II) ions in aqueous solution. Quim Nova 40:733–738

    CAS  Google Scholar 

  32. Fang Y, Li X, Li JY et al (2018) Thiooxo-Rhodamine B hydrazone derivatives bearing bithiophene group as fluorescent chemosensors for detecting mercury(II) in aqueous media and living HeLa cells. Sensors Actuators B Chem 255:1182–1190. https://doi.org/10.1016/j.snb.2017.06.050

    Article  CAS  Google Scholar 

  33. Min KS, Manivannan R, Son YA (2018) Rhodamine-fluorene based dual channel probe for the detection of Hg2+ ions and its application in digital printing. Sensors Actuators B Chem 261:545–552. https://doi.org/10.1016/j.snb.2018.01.178

    Article  CAS  Google Scholar 

  34. Patil SK, Das D (2019) A nanomolar detection of mercury(II) ion by a chemodosimetric rhodamine-based sensor in an aqueous medium: Potential applications in real water samples and as paper strips. Spectrochim Acta - Part A Mol Biomol Spectrosc 210:44–51. https://doi.org/10.1016/j.saa.2018.11.005

    Article  CAS  Google Scholar 

  35. Rasheed T, Nabeel F, Bilal M et al (2019) Aqueous monitoring of toxic mercury through a rhodamine-based fluorescent sensor. Math Biosci Eng 16:1861–1873. https://doi.org/10.3934/mbe.2019090

    Article  PubMed  Google Scholar 

  36. Cicekbilek F, Yilmaz B, Bayrakci M, Gezici O (2019) An application of a schiff-base type reaction in the synthesis of a new rhodamine-based Hg(II)-Sensing agent. J Fluoresc 29:1349–1358. https://doi.org/10.1007/s10895-019-02462-5

    Article  CAS  PubMed  Google Scholar 

  37. Hazra S, Bodhak C, Chowdhury S et al (2019) A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg 2+ present in aqueous medium and its biological applications. Anal Bioanal Chem 411:1143–1157. https://doi.org/10.1007/s00216-018-1546-0

    Article  CAS  PubMed  Google Scholar 

  38. Kan C, Shao X, Song F et al (2019) Bioimaging of a fluorescence rhodamine-based probe for reversible detection of Hg (II) and its application in real water environment. Microchem J 150:104142. https://doi.org/10.1016/j.microc.2019.104142

    Article  CAS  Google Scholar 

  39. Patil SK, Das D (2020) A novel rhodamine-based optical probe for mercury(II) ion in aqueous medium: A nanomolar detection, wide pH range and real water sample application. Spectrochim Acta - Part A Mol Biomol Spectrosc 225:117504. https://doi.org/10.1016/j.saa.2019.117504

    Article  CAS  Google Scholar 

  40. Wang Y, Ding H, Zhu Z et al (2020) Selective rhodamine–based probe for detecting Hg2+ and its application as test strips and cell staining. J Photochem Photobiol A Chem 390:112302. https://doi.org/10.1016/j.jphotochem.2019.112302

    Article  CAS  Google Scholar 

  41. Vanjare BD, Mahajan PG, Ryoo HI et al (2021) Novel rhodamine based chemosensor for detection of Hg2+: Nanomolar detection, real water sample analysis, and intracellular cell imaging. Sensors Actuators B Chem 330:129308. https://doi.org/10.1016/j.snb.2020.129308

    Article  CAS  Google Scholar 

  42. Gauthama BU, Narayana B, Sarojini BK et al (2021) Colorimetric “off–on” fluorescent probe for selective detection of toxic Hg2+ based on rhodamine and its application for in-vivo bioimaging. Microchem J 166:106233. https://doi.org/10.1016/j.microc.2021.106233

    Article  CAS  Google Scholar 

  43. Li X, Li X, Zhao H et al (2021) A novel diarylethene-rhodamine unit based chemosensor for fluorimetric and colorimetric detection of Hg2+. J Fluoresc 31:1513–1523. https://doi.org/10.1007/s10895-021-02775-4

    Article  CAS  PubMed  Google Scholar 

  44. Huang J, Xu Y, Qian X (2009) A rhodamine-based Hg 2 + sensor with high selectivity and sensitivity in aqueous solution: A NS 2 -containing receptor S CHEME 1. Representative mechanism of the chemosensor based on the RhB A rhodamine-based sensor 1 was designed and synthesized NS 2 w. JOrgChem 74:5039–5042

    Google Scholar 

  45. Singh S, Coulomb B, Boudenne JL et al (2021) Sub-ppb mercury detection in real environmental samples with an improved rhodamine-based detection system. Talanta 224:. https://doi.org/10.1016/j.talanta.2020.121909

  46. Ding P, Wang J, Cheng J et al (2015) Three N-stabilized rhodamine-based fluorescent probes for Al3+via Al3+-promoted hydrolysis of Schiff bases. New J Chem 39:342–348. https://doi.org/10.1039/C4NJ01357C

    Article  CAS  Google Scholar 

  47. Roy A, Mukherjee R, Dam B et al (2018) A rhodamine-based fluorescent chemosensor for Al3+: Is it possible to control the metal ion selectivity of a rhodamine-6G based chemosensor? New J Chem 42:8415–8425. https://doi.org/10.1039/c8nj01130c

    Article  CAS  Google Scholar 

  48. Maniyazagan M, Mariadasse R, Nachiappan M et al (2018) Synthesis of rhodamine based organic nanorods for efficient chemosensor probe for Al (III) ions and its biological applications. Sensors Actuators B Chem 254:795–804. https://doi.org/10.1016/j.snb.2017.07.106

    Article  CAS  Google Scholar 

  49. Manjunath R, Kannan P (2018) Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion. Opt Mater (Amst) 79:38–44. https://doi.org/10.1016/j.optmat.2018.03.021

    Article  CAS  Google Scholar 

  50. Gupta VK, Mergu N, Kumawat LK, Singh AK (2015) A reversible fluorescence “off-on-off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta 144:80–89. https://doi.org/10.1016/j.talanta.2015.05.053

    Article  CAS  PubMed  Google Scholar 

  51. Sen B, Mukherjee M, Banerjee S et al (2015) A rhodamine-based “turn-on” Al3+ ion-selective reporter and the resultant complex as a secondary sensor for F- ion are applicable to living cell staining. Dalt Trans 44:8708–8717. https://doi.org/10.1039/c5dt00315f

    Article  CAS  Google Scholar 

  52. Mabhai S, Dolai M, Dey S et al (2018) A novel chemosensor based on rhodamine and azobenzene moieties for selective detection of Al3+ ions. New J Chem 42:10191–10201. https://doi.org/10.1039/c8nj00436f

    Article  CAS  Google Scholar 

  53. Kaur R, Saini S, Kaur N et al (2020) Rhodamine-based fluorescent probe for sequential detection of Al3+ ions and adenosine monophosphate in water. Spectrochim Acta - Part A Mol Biomol Spectrosc 225:117523. https://doi.org/10.1016/j.saa.2019.117523

    Article  CAS  Google Scholar 

  54. Li D, Li CY, Qi HR et al (2016) Rhodamine-based chemosensor for fluorescence determination of trivalent chromium ion in living cells. Sensors Actuators B Chem 223:705–712. https://doi.org/10.1016/j.snb.2015.09.126

    Article  CAS  Google Scholar 

  55. Li XM, Zhao RR, Yang Y et al (2017) A Rhodamine-based fluorescent sensor for chromium ions and its application in bioimaging. Chinese Chem Lett 28:1258–1261. https://doi.org/10.1016/j.cclet.2016.12.029

    Article  CAS  Google Scholar 

  56. Sunnapu O, Kotla NG, Maddiboyina B et al (2017) Rhodamine based effective chemosensor for Chromium(III) and their application in live cell imaging. Sensors Actuators B Chem 246:761–768. https://doi.org/10.1016/j.snb.2017.02.152

    Article  CAS  Google Scholar 

  57. Sahana S, Mishra G, Sivakumar S, Bharadwaj PK (2018) Rhodamine – Cyclohexane diamine based “turn-on” fluorescence chemosensor for Cr3+: Photophysical & confocal cell imaging studies. J Photochem Photobiol A Chem 351:42–49. https://doi.org/10.1016/j.jphotochem.2017.10.004

    Article  CAS  Google Scholar 

  58. Goswami S, Manna A, Aich K, Paul S (2012) A simple rhodamine-based naked-eye and fluorescence “off-on” sensor for Cu(II) in aqueous solution. Chem Lett 41:1600–1602. https://doi.org/10.1246/cl.2012.1600

    Article  CAS  Google Scholar 

  59. Guo D, Dong Z, Luo C et al (2014) A rhodamine B-based “turn-on” fluorescent sensor for detecting Cu2+ and sulfur anions in aqueous media. RSC Adv 4:5718–5725. https://doi.org/10.1039/c3ra45931d

    Article  CAS  Google Scholar 

  60. Li X, Chen X, Zhang Y, Son YA (2014) A highly selective rhodamine based colorimetric sensor toward Cu2+. Mol Cryst Liq Cryst 599:8–15. https://doi.org/10.1080/15421406.2014.934318

    Article  CAS  Google Scholar 

  61. Sun Z, Li H, Guo D et al (2015) A novel piperazine-bis(rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu2+ and its application as an INHIBIT logic device. J Lumin 167:156–162. https://doi.org/10.1016/j.jlumin.2015.06.018

    Article  CAS  Google Scholar 

  62. Li G, Tao F, Wang H et al (2015) A novel reversible colorimetric chemosensor for the detection of Cu2+ based on a water-soluble polymer containing rhodamine receptor pendants. RSC Adv 5:18983–18989. https://doi.org/10.1039/c5ra00745c

    Article  CAS  Google Scholar 

  63. Fang Y, Zhou Y, Rui Q, Yao C (2015) Rhodamine-ferrocene conjugate chemosensor for selectively sensing Copper(II) with multisignals: chromaticity, fluorescence, and electrochemistry and its application in living cell imaging. Organometallics 34:2962–2970. https://doi.org/10.1021/acs.organomet.5b00285

    Article  CAS  Google Scholar 

  64. Hu Y, Zhang J, Lv YZ et al (2016) A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu 2 + in aqueous solution. Spectrochim Acta - Part A Mol Biomol Spectrosc 157:164–169. https://doi.org/10.1016/j.saa.2015.12.031

    Article  CAS  Google Scholar 

  65. Wang X, Tao J, Chen X, Yang H (2017) An ultrasensitive and selective “off-on” rhodamine-based colorimetric and fluorescent chemodosimeter for the detection of Cu2+. Sensors Actuators B Chem 244:709–716. https://doi.org/10.1016/j.snb.2017.01.040

    Article  CAS  Google Scholar 

  66. Maji A, Lohar S, Pal S, Chattopadhyay P (2017) A new rhodamine based ‘turn-on’ Cu 2 + ion selective chemosensor in aqueous system applicable in bioimaging. J Chem Sci 129:1423–1430. https://doi.org/10.1007/s12039-017-1349-4

    Article  CAS  Google Scholar 

  67. Park H, An KL, Naveen M et al (2018) Rhodamine-based colorimetric and fluorescent chemosensors for the detection of Cu2+ Ions and its application to bioimaging. Bull Korean Chem Soc 39:972–981. https://doi.org/10.1002/bkcs.11537

    Article  CAS  Google Scholar 

  68. Yang LL, Tang AL, Wang PY, Yang S (2020) Switching of C-C and C-N Coupling/Cleavage for hypersensitive detection of Cu2+by a catalytically Mediated 2-Aminoimidazolyl-Tailored Six-Membered Rhodamine Probe. Org Lett 22:8234–8239. https://doi.org/10.1021/acs.orglett.0c02814

    Article  CAS  PubMed  Google Scholar 

  69. Karakuş E (2021) A rhodamine based fluorescent chemodosimeter for the selective and sensitive detection of copper (II) ions in aqueous media and living cells. J Mol Struct 1224:129037. https://doi.org/10.1016/j.molstruc.2020.129037

    Article  CAS  Google Scholar 

  70. Yang L, Zhang X, Yang J et al (2021) A rhodamine-based chemosensor and functionalized gel ball for detecting and adsorbing copper ions. Tetrahedron 80:131893. https://doi.org/10.1016/j.tet.2020.131893

    Article  CAS  Google Scholar 

  71. Aydin Z, Wei Y, Guo M (2012) A highly selective rhodamine based turn-on optical sensor for Fe 3+. Inorg Chem Commun 20:93–96. https://doi.org/10.1016/j.inoche.2012.02.025

    Article  CAS  Google Scholar 

  72. Bordini J, Calandreli I, Silva GO et al (2013) A rhodamine-B-based turn-on fluorescent sensor for biological iron(III). Inorg Chem Commun 35:255–259. https://doi.org/10.1016/j.inoche.2013.06.017

    Article  CAS  Google Scholar 

  73. Xie P, Guo F, Xia R et al (2014) A rhodamine-dansyl conjugate as a FRET based sensor for Fe3+ in the red spectral region. J Lumin 145:849–854. https://doi.org/10.1016/j.jlumin.2013.09.003

    Article  CAS  Google Scholar 

  74. Huang J, Xu Y, Qian X (2014) Rhodamine-based fluorescent off–on sensor for Fe3+– in aqueous solution and in living cells: 8-aminoquinoline receptor and 2: 1 binding. J Chem Soc Dalt Trans 43:5983–5989. https://doi.org/10.1039/c3dt53159g

    Article  CAS  Google Scholar 

  75. Han X, Wang DE, Chen S et al (2015) A new rhodamine-based chemosensor for turn-on fluorescent detection of Fe3+. Anal Methods 7:4231–4236. https://doi.org/10.1039/c5ay00568j

    Article  CAS  Google Scholar 

  76. Ma S, Yang Z, She M et al (2015) Design and synthesis of functionalized rhodamine based probes for specific intracellular fluorescence imaging of Fe3+. Dye Pigment 115:120–126. https://doi.org/10.1016/j.dyepig.2014.12.014

    Article  CAS  Google Scholar 

  77. Yan F, Zheng T, Shi D et al (2015) Rhodamine-aminopyridine based fluorescent sensors for Fe3+ in water: Synthesis, quantum chemical interpretation and living cell application. Sensors Actuators B Chem 215:598–606. https://doi.org/10.1016/j.snb.2015.03.096

    Article  CAS  Google Scholar 

  78. Chan S, Li Q, Tse H et al (2016) A rhodamine-based “off-on” fluorescent chemosensor for selective detection of Fe3+ in aqueous media and its application in bioimaging. RSC Adv 6:74389–74393. https://doi.org/10.1039/c6ra14411j

    Article  CAS  Google Scholar 

  79. Zhou F, Leng TH, Liu YJ et al (2017) Water-soluble rhodamine-based chemosensor for Fe3+ with high sensitivity, selectivity and anti-interference capacity and its imaging application in living cells. Dye Pigment 142:429–436. https://doi.org/10.1016/j.dyepig.2017.03.057

    Article  CAS  Google Scholar 

  80. Xu H, Ding H, Li G et al (2017) A highly selective fluorescent chemosensor for Fe3+ based on a new diarylethene with a rhodamine 6G unit. RSC Adv 7:29827–29834. https://doi.org/10.1039/c7ra04728b

    Article  CAS  Google Scholar 

  81. Kumar A, Kumari C, Sain D et al (2017) Synthesis of rhodamine-based chemosensor for Fe3+ selective detection with off–on mechanism and its biological application in DL-Tumor cells. ChemistrySelect 2:2969–2974. https://doi.org/10.1002/slct.201700165

    Article  CAS  Google Scholar 

  82. Vijay N, Wu SP, Velmathi S (2019) Turn on fluorescent chemosensor containing rhodamine B fluorophore for selective sensing and in vivo fluorescent imaging of Fe3+ ions in HeLa cell line and zebrafish. J Photochem Photobiol A Chem 384:112060. https://doi.org/10.1016/j.jphotochem.2019.112060

    Article  CAS  Google Scholar 

  83. Wang X, Li T (2020) A novel “off-on” rhodamine-based colorimetric and fluorescent chemosensor based on hydrolysis driven by aqueous medium for the detection of Fe3+. Spectrochim Acta - Part A Mol Biomol Spectrosc 229:117951. https://doi.org/10.1016/j.saa.2019.117951

    Article  CAS  Google Scholar 

  84. Liu Y, Zhao C, Zhao X et al (2020) A selective N, N-dithenoyl-rhodamine based fluorescent probe for Fe3+ detection in aqueous and living cells. J Environ Sci (China) 90:180–188. https://doi.org/10.1016/j.jes.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  85. Wang Q, Li C, Zou Y et al (2012) A highly selective fluorescence sensor for Tin (Sn4+) and its application in imaging live cells. Org Biomol Chem 10:6740–6746. https://doi.org/10.1039/c2ob25895a

    Article  CAS  PubMed  Google Scholar 

  86. Mahapatra AK, Manna SK, Maiti K et al (2014) Imino-phenolic-azodye appended rhodamine as a primary fluorescence “off-on” chemosensor for tin (Sn4+) in solution and in RAW cells and the recognition of sulphide by [AR-Sn]. RSC Adv 4:36615–36622. https://doi.org/10.1039/c4ra05729e

    Article  CAS  Google Scholar 

  87. Yang Z, She M, Ma S et al (2017) Rhodamine based guanidinobenzimidazole functionalized fluorescent probe for tetravalent tin and its application in living cells imaging. Sensors Actuators B Chem 242:872–879. https://doi.org/10.1016/j.snb.2016.09.170

    Article  CAS  Google Scholar 

  88. Yan Z, Wei G, Guang S et al (2018) A multidentate ligand chromophore with rhodamine-triazole-pyridine units and its acting mechanism for dual-mode visual sensing trace Sn2+. Dye Pigment 159:542–550. https://doi.org/10.1016/j.dyepig.2018.07.028

    Article  CAS  Google Scholar 

  89. Wang X, Zhang L, Zhuang S et al (2019) A novel fluorescent sensor for Sn4+ detection: Dark resonance energy transfer from silole to rhodamine. Appl Organomet Chem 33:2–8. https://doi.org/10.1002/aoc.5067

    Article  CAS  Google Scholar 

  90. Mahapatra AK, Manna SK, Mandal D, Das MC (2013) Highly sensitive and selective rhodamine-based “off-on” reversible chemosensor for tin (Sn4+) and imaging in living cells. Inorg Chem 52:10825–10834. https://doi.org/10.1021/ic4007026

    Article  CAS  PubMed  Google Scholar 

  91. Cheng J, Yang E, Ding P et al (2015) Two rhodamine based chemosensors for Sn4+ and the application in living cells. Sensors Actuators B Chem 221:688–693. https://doi.org/10.1016/j.snb.2015.07.003

    Article  CAS  Google Scholar 

  92. Wechakorn K, Suksen K, Piyachaturawat P, Kongsaeree P (2016) Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sensors Actuators B Chem 228:270–277. https://doi.org/10.1016/j.snb.2016.01.045

    Article  CAS  Google Scholar 

  93. Karmegam MV, Karuppannan S, Christopher Leslee DB et al (2020) Phenothiazine–rhodamine-based colorimetric and fluorogenic ‘turn-on’’ sensor for Zn2+ and bioimaging studies in live cells’. Luminescence 35:90–97. https://doi.org/10.1002/bio.3701

    Article  CAS  PubMed  Google Scholar 

  94. Maniyazagan M, Mariadasse R, Jeyakanthan J et al (2017) Rhodamine based “turn–on” molecular switch FRET–sensor for cadmium and sulfide ions and live cell imaging study. Sensors Actuators B Chem 238:565–577. https://doi.org/10.1016/j.snb.2016.07.102

    Article  CAS  Google Scholar 

  95. Aich K, Goswami S, Das S et al (2015) Cd2+ Triggered the FRET “ON”: A new molecular switch for the ratiometric detection of Cd2+ with live-cell imaging and bound X-ray structure. Inorg Chem 54:7309–7315. https://doi.org/10.1021/acs.inorgchem.5b00784

    Article  CAS  PubMed  Google Scholar 

  96. Kumari C, Sain D, Kumar A et al (2017) Intracellular detection of hazardous Cd2+ through a fluorescence imaging technique by using a nontoxic coumarin based sensor. Dalt Trans 46:2524–2531. https://doi.org/10.1039/c6dt04833a

    Article  CAS  Google Scholar 

  97. Sakthivel P, Sekar K, Sivaraman G, Singaravadivel S (2017) Rhodamine diaminomaleonitrile conjugate as a novel colorimetric fluorescent sensor for recognition of Cd2+ Ion. J Fluoresc 27:1109–1115. https://doi.org/10.1007/s10895-017-2046-x

    Article  CAS  PubMed  Google Scholar 

  98. Sunnapu O, Kotla NG, Maddiboyina B et al (2015) A rhodamine based “turn-on” fluorescent probe for Pb(II) and live cell imaging. RSC Adv 6:656–660. https://doi.org/10.1039/c5ra20482h

    Article  Google Scholar 

  99. Srisuratsiri P, Kanjanasirirat P, Chairongdua A, Kongsaeree P (2017) Reversible rhodamine-alkyne Au3+-selective chemosensor and its bioimaging application. Tetrahedron Lett 58:3194–3199. https://doi.org/10.1016/j.tetlet.2017.07.014

    Article  CAS  Google Scholar 

  100. Wu G, Wang Z, Zhang W et al (2019) A novel rhodamine B and purine derivative-based fluorescent chemosensor for detection of palladium (II) ion. Inorg Chem Commun 102:233–239. https://doi.org/10.1016/j.inoche.2019.02.038

    Article  CAS  Google Scholar 

  101. Tang FK, Chan SM, Wang T et al (2020) Highly selective detection of Pd2+ ion in aqueous solutions with rhodamine-based colorimetric and fluorescent chemosensors. Talanta 210:. https://doi.org/10.1016/j.talanta.2019.120634

  102. Wang M, Liu X, Lu H et al (2015) Highly selective and reversible chemosensor for Pd2+ detected by fluorescence, colorimetry, and test paper. ACS Appl Mater Interfaces 7:1284–1289. https://doi.org/10.1021/am507479m

    Article  CAS  PubMed  Google Scholar 

  103. Chen Y, Chen B, Han Y (2016) A novel rhodamine-based fluorescent probe for the fluorogenic and chromogenic detection of Pd2+ ions and its application in live-cell imaging. Sensors Actuators B Chem 237:1–7. https://doi.org/10.1016/j.snb.2016.06.067

    Article  CAS  Google Scholar 

  104. Mironenko AY, Tutov MV, Sergeev AA et al (2017) On/off rhodamine based fluorescent probe for detection of Au and Pd in aqueous solutions. Sensors Actuators B Chem 246:389–394. https://doi.org/10.1016/j.snb.2017.02.092

    Article  CAS  Google Scholar 

  105. Chen H, Jin X, Zhang W et al (2018) A new rhodamine B-based ‘off-on’ colorimetric chemosensor for Pd2+ and its imaging in living cells. Inorganica Chim Acta 482:122–129. https://doi.org/10.1016/j.ica.2018.05.032

    Article  CAS  Google Scholar 

  106. Soares-Paulino AA, Giroldo L, Pradie NA et al (2020) Nanomolar Detection of Palladium (II) through a Novel Seleno-Rhodamine-based fluorescent and colorimetric chemosensor. Dye Pigment 179:. https://doi.org/10.1016/j.dyepig.2020.108355

  107. Pitsanuwong C, Boonwan J, Chomngam S et al (2021) A rhodamine-based fluorescent chemodosimeter for Au3+ in aqueous solution and living cells. J Fluoresc 31:1211–1218. https://doi.org/10.1007/s10895-021-02725-0

    Article  CAS  PubMed  Google Scholar 

  108. Emrullahoǧlu M, Karakuş E, Üçüncü M (2013) A rhodamine based “turn-on” chemodosimeter for monitoring gold ions in synthetic samples and living cells. Analyst 138:3638–3641. https://doi.org/10.1039/c3an00024a

    Article  CAS  PubMed  Google Scholar 

  109. Mondal S, Manna SK, Pathak S et al (2020) A “turn-on” fluorescent and colorimetric chemodosimeter for selective detection of Au3+ ions in solution and in live cells: Via Au3+-induced hydrolysis of a rhodamine-derived Schiff base. New J Chem 44:7954–7961. https://doi.org/10.1039/d0nj01273d

    Article  CAS  Google Scholar 

  110. Liu A, Yang L, Zhang Z et al (2013) A novel rhodamine-based colorimetric and fluorescent sensor for the dual-channel detection of Cu2+ and Fe3+ in aqueous solutions. Dye Pigment 99:472–479. https://doi.org/10.1016/j.dyepig.2013.06.007

    Article  CAS  Google Scholar 

  111. Lohar S, Banerjee A, Sahana A et al (2013) A rhodamine-naphthalene conjugate as a FRET based sensor for Cr 3+ and Fe3+ with cell staining application. Anal Methods 5:442–445. https://doi.org/10.1039/c2ay26224j

    Article  CAS  Google Scholar 

  112. Sivaraman G, Anand T, Chellappa D (2014) A fluorescence switch for the detection of nitric oxide and histidine and its application in live cell imaging. ChemPlusChem 79:1761–1766. https://doi.org/10.1002/cplu.201402217

    Article  CAS  Google Scholar 

  113. Chemate S, Sekar N (2015) A new rhodamine based OFF-ON fluorescent chemosensors for selective detection of Hg2+ and Al3+ in aqueous media. Sensors Actuators B Chem 220:1196–1204. https://doi.org/10.1016/j.snb.2015.06.061

    Article  CAS  Google Scholar 

  114. Liu L, Wang A, Wang G et al (2015) A naphthopyran-rhodamine based fluorescent and colorimetric chemosensor for recognition of common trivalent metal ions and Cu2+ ions. Sensors Actuators B Chem 215:388–395. https://doi.org/10.1016/j.snb.2015.03.093

    Article  CAS  Google Scholar 

  115. Patidar R, Rebary B, Paul P (2015) Colorimetric and fluorogenic recognition of Hg2+ and Cr3+ in acetonitrile and their test paper recognition in aqueous media with the aid of rhodamine based sensors. J Fluoresc 25:387–395. https://doi.org/10.1007/s10895-015-1524-2

    Article  CAS  PubMed  Google Scholar 

  116. Arumugaperumal R, Srinivasadesikan V, Lin MC et al (2016) Facile rhodamine-based colorimetric sensors for sequential detections of Cu(ii) ions and pyrophosphate (P2O74−) anions. RSC Adv 6:106631–106640. https://doi.org/10.1039/c6ra24472f

    Article  CAS  Google Scholar 

  117. Weerasinghe AJ, Oyeamalu AN, Abebe FA et al (2016) Rhodamine based turn-on sensors for Ni2+ and Cr3+ in organic media: detecting CN− via the metal displacement approach. J Fluoresc 26:891–898. https://doi.org/10.1007/s10895-016-1777-4

    Article  CAS  PubMed  Google Scholar 

  118. Ozdemir M (2016) A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions. J Photochem Photobiol A Chem 318:7–13. https://doi.org/10.1016/j.jphotochem.2015.10.027

    Article  CAS  Google Scholar 

  119. Lan T, Wang FH, Xi XJ et al (2016) A rhodamine-based dual chemosensor for the simultaneous detection of Fe3+ and Cu2+. Anal Sci 32:1223–1230. https://doi.org/10.2116/analsci.32.1223

    Article  CAS  PubMed  Google Scholar 

  120. Wang L, Ye D, Li W et al (2017) Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe. Spectrochim Acta - Part A Mol Biomol Spectrosc 183:291–297. https://doi.org/10.1016/j.saa.2017.04.056

    Article  CAS  Google Scholar 

  121. Su W, Yuan S, Wang E (2017) A rhodamine-based fluorescent chemosensor for the detection of Pb2+, Hg2+ and Cd2+. J Fluoresc 27:1871–1875. https://doi.org/10.1007/s10895-017-2124-0

    Article  CAS  PubMed  Google Scholar 

  122. Dey S, Sarkar S, Maity D, Roy P (2017) Rhodamine based chemosensor for trivalent cations: Synthesis, spectral properties, secondary complex as sensor for arsenate and molecular logic gates. Sensors Actuators B Chem 246:518–534. https://doi.org/10.1016/j.snb.2017.02.094

    Article  CAS  Google Scholar 

  123. Wang KP, Chen JP, Zhang SJ et al (2017) Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells. Anal Bioanal Chem 409:5547–5554. https://doi.org/10.1007/s00216-017-0490-8

    Article  CAS  PubMed  Google Scholar 

  124. Wang Y, Chang HQ, Wu WN et al (2017) Rhodamine-2-thioxoquinazolin-4-one conjugate: A highly sensitive and selective chemosensor for Fe3+ ions and crystal structures of its Ag(I) and Hg(II) complexes. Sensors Actuators B Chem 239:60–68. https://doi.org/10.1016/j.snb.2016.07.170

    Article  CAS  Google Scholar 

  125. Rai A, Singh AK, Tripathi K et al (2018) A quick and selective rhodamine based “smart probe” for “signal-on” optical detection of Cu2+ and Al3+ in water, cell imaging, computational studies and solid state analysis. Sensors Actuators B Chem 266:95–105. https://doi.org/10.1016/j.snb.2018.02.019

    Article  CAS  Google Scholar 

  126. Senthil Murugan A, Vidhyalakshmi N, Ramesh U, Annaraj J (2018) In vivo bio-imaging studies of highly selective, sensitive rhodamine based fluorescent chemosensor for the detection of Cu2+/Fe3+ ions. Sensors Actuators B Chem 274:22–29. https://doi.org/10.1016/j.snb.2018.07.104

    Article  CAS  Google Scholar 

  127. Rasheed T, Li C, Zhang Y et al (2018) Rhodamine-based multianalyte colorimetric probe with potentialities as on-site assay kit and in biological systems. Sensors Actuators B Chem 258:115–124. https://doi.org/10.1016/j.snb.2017.11.100

    Article  CAS  Google Scholar 

  128. Roy A, Shee U, Mukherjee A et al (2019) Rhodamine-based dual chemosensor for Al 3+ and Zn 2+ ions with distinctly separated excitation and emission wavelengths. ACS Omega 4:6864–6875. https://doi.org/10.1021/acsomega.9b00475

    Article  CAS  Google Scholar 

  129. Mironenko AY, Tutov MV, Chepak AK et al (2019) A novel rhodamine-based turn-on probe for fluorescent detection of Au 3+ and colorimetric detection of Cu 2+. Tetrahedron 75:1492–1496. https://doi.org/10.1016/j.tet.2019.01.068

    Article  CAS  Google Scholar 

  130. Mabhai S, Dolai M, Dey SK et al (2019) Rhodamine-azobenzene based single molecular probe for multiple ions sensing: Cu 2+, Al 3+, Cr 3+ and its imaging in human lymphocyte cells. Spectrochim Acta - Part A Mol Biomol Spectrosc 219:319–332. https://doi.org/10.1016/j.saa.2019.04.056

    Article  CAS  Google Scholar 

  131. Roy A, Das S, Sacher S et al (2019) A rhodamine based biocompatible chemosensor for Al3+, Cr3+ and Fe3+ ions: Extraordinary fluorescence enhancement and a precursor for future chemosensors. Dalt Trans 48:17594–17604. https://doi.org/10.1039/c9dt03833g

    Article  CAS  Google Scholar 

  132. Jiang D, Xue X, Zhang G et al (2019) Simple and efficient rhodamine-derived VO2+ and Cu2+-responsive colorimetric and reversible fluorescent chemosensors toward the design of multifunctional materials. J Mater Chem C 7:3576–3589. https://doi.org/10.1039/c8tc06296j

    Article  CAS  Google Scholar 

  133. Sağırlı A, Bozkurt E (2020) Rhodamine-based arylpropenone azo dyes as dual chemosensor for Cu2+/Fe3+ detection. J Photochem Photobiol A Chem 403:. https://doi.org/10.1016/j.jphotochem.2020.112836

  134. Hu JP, Yang HH, Lin Q et al (2020) A rhodamine-based dual chemosensor for the naked-eye detection of Hg2+and enhancement of the fluorescence emission for Fe3+. Photochem Photobiol Sci 19:1690–1696. https://doi.org/10.1039/d0pp00302f

    Article  CAS  PubMed  Google Scholar 

  135. Sadak AE, Karakuş E (2020) Triazatruxene–rhodamine-based ratiometric fluorescent chemosensor for the sensitive, rapid detection of trivalent metal ions: Aluminium (III), Iron (III) and Chromium (III). J Fluoresc 30:213–220. https://doi.org/10.1007/s10895-020-02491-5

    Article  CAS  PubMed  Google Scholar 

  136. Chan WC, Saad HM, Sim KS et al (2021) A rhodamine based chemosensor for solvent dependent chromogenic sensing of cobalt (II) and copper (II) ions with good selectivity and sensitivity: Synthesis, filter paper test strip, DFT calculations and cytotoxicity. Spectrochim Acta - Part A Mol Biomol Spectrosc 262:120099. https://doi.org/10.1016/j.saa.2021.120099

    Article  CAS  Google Scholar 

  137. Tavallali H, Deilamy-Rad G, Parhami A, Hasanli N (2015) An efficient and ultrasensitive rhodamine B-based reversible colorimetric chemosensor for naked-eye recognition of molybdenum and citrate ions in aqueous solution: Sensing behavior and logic operation. Spectrochim Acta - Part A Mol Biomol Spectrosc 139:253–261. https://doi.org/10.1016/j.saa.2014.11.110

    Article  CAS  Google Scholar 

  138. Ding H, Zheng C, Li B et al (2016) A rhodamine-based sensor for Hg2+ and resultant complex as a fluorescence sensor for I-. RSC Adv 6:80723–80728. https://doi.org/10.1039/c6ra17861h

    Article  CAS  Google Scholar 

  139. Majumdar A, Lim CS, Kim HM, Ghosh K (2017) New six-membered pH-Insensitive rhodamine spirocycle in selective sensing of Cu2+ through C-C bond cleavage and its application in cell imaging. ACS Omega 2:8167–8176. https://doi.org/10.1021/acsomega.7b01324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yoon JW, Chang MJ, Hong S, Lee MH (2017) A fluorescent probe for copper and hypochlorite based on rhodamine hydrazide framework. Tetrahedron Lett 58:3887–3893. https://doi.org/10.1016/j.tetlet.2017.08.071

    Article  CAS  Google Scholar 

  141. Mehta R, Kaur P, Choudhury D et al (2019) Al 3+ induced hydrolysis of rhodamine-based Schiff-base: Applications in cell imaging and ensemble as CN - sensor in 100% aqueous medium. J Photochem Photobiol A Chem 380:111851. https://doi.org/10.1016/j.jphotochem.2019.05.014

    Article  CAS  Google Scholar 

  142. Abebe F, Gonzalez J, Makins-Dennis K, Shaw R (2020) A new bis(rhodamine)-based colorimetric chemosensor for Cu2+. Inorg Chem Commun 120:108154. https://doi.org/10.1016/j.inoche.2020.108154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Abebe F, Perkins P, Shaw R, Tadesse S (2020) A rhodamine-based fluorescent sensor for selective detection of Cu2+ in aqueous media: Synthesis and spectroscopic properties. J Mol Struct 1205:127594. https://doi.org/10.1016/j.molstruc.2019.127594

    Article  CAS  PubMed  Google Scholar 

  144. Kan C, Wu L, Wang X et al (2021) Rhodamine B-based chemiluminescence sensor for aluminum ion monitoring and bioimaging applications. Tetrahedron 85:132054. https://doi.org/10.1016/j.tet.2021.132054

    Article  CAS  Google Scholar 

  145. Tan JL, Zhang MX, Zhang F et al (2015) A novel “off-on” colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity. Spectrochim Acta - Part A Mol Biomol Spectrosc 140:489–494. https://doi.org/10.1016/j.saa.2014.12.110

    Article  CAS  Google Scholar 

  146. Tan JL, Yang TT, Liu Y et al (2016) Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor. Luminescence 31:865–870. https://doi.org/10.1002/bio.3043

    Article  CAS  PubMed  Google Scholar 

  147. Xue Z, Chen M, Chen J et al (2014) A rhodamine-benzimidazole based sensor for selective imaging of acidic pH. RSC Adv 4:374–378. https://doi.org/10.1039/c3ra45329d

    Article  CAS  Google Scholar 

  148. Liu A, Hong M, Yang W et al (2014) One-pot synthesis of a new rhodamine-based dually-responsive pH sensor and its application to bioimaging. Tetrahedron 70:6974–6979. https://doi.org/10.1016/j.tet.2014.07.087

    Article  CAS  Google Scholar 

  149. Lee D, Swamy KMK, Hong J et al (2018) A rhodamine-based fluorescent probe for the detection of lysosomal pH changes in living cells. Sensors Actuators B Chem 266:416–421. https://doi.org/10.1016/j.snb.2018.03.133

    Article  CAS  Google Scholar 

  150. Zhang XF, Wang TR, Cao XQ, Shen SL (2020) A near-infrared rhodamine-based lysosomal pH probe and its application in lysosomal pH rise during heat shock. Spectrochim Acta - Part A Mol Biomol Spectrosc 227:117761. https://doi.org/10.1016/j.saa.2019.117761

    Article  CAS  Google Scholar 

  151. Sunnapu O, Kotla NG, Maddiboyina B et al (2017) Rhodamine-Based Fluorescent Turn-On Probe for Facile Sensing and Imaging of ATP in Mitochondria. ChemistrySelect 2:7654–7658. https://doi.org/10.1002/slct.201701149

    Article  CAS  Google Scholar 

  152. Chen H, Zhou B, Ye R et al (2017) Synthesis and evaluation of a new fluorescein and rhodamine B-based chemosensor for highly sensitive and selective detection of cysteine over other amino acids and its application in living cell imaging. Sensors Actuators B Chem 251:481–489. https://doi.org/10.1016/j.snb.2017.05.078

    Article  CAS  Google Scholar 

  153. Shu H, Wu X, Zhou B et al (2017) Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine B and N-[4-(carbonyl) phenyl]maleimide conjugate and its application in living cell imaging. Dye Pigment 136:535–542. https://doi.org/10.1016/j.dyepig.2016.08.063

    Article  CAS  Google Scholar 

  154. Liu Y, Lee D, Wu D et al (2018) A new kind of rhodamine-based fluorescence turn-on probe for monitoring ATP in mitochondria. Sensors Actuators B Chem 265:429–434. https://doi.org/10.1016/j.snb.2018.03.081

    Article  CAS  Google Scholar 

  155. Tikum AF, Kim G, Nasirian A et al (2019) Rhodamine-based near-infrared probe for emission detection of ATP in lysosomes in living cells. Sensors Actuators B Chem 292:40–47. https://doi.org/10.1016/j.snb.2019.04.112

    Article  CAS  Google Scholar 

  156. Zhang H, Li K, Li LL et al (2019) Pyridine-Si-xanthene: A novel near-infrared fluorescent platform for biological imaging. Chinese Chem Lett 30:1063–1066. https://doi.org/10.1016/j.cclet.2019.03.017

    Article  CAS  Google Scholar 

  157. Long L, Zhang D, Li X et al (2013) A fluorescence ratiometric sensor for hypochlorite based on a novel dual-fluorophore response approach. Anal Chim Acta 775:100–105. https://doi.org/10.1016/j.aca.2013.03.016

    Article  CAS  PubMed  Google Scholar 

  158. Lee HJ, Cho MJ, Chang SK (2015) Ratiometric signaling of hypochlorite by the oxidative cleavage of sulfonhydrazide-based rhodamine-dansyl dyad. Inorg Chem 54:8644–8649. https://doi.org/10.1021/acs.inorgchem.5b01284

    Article  CAS  PubMed  Google Scholar 

  159. Ou Z, Shi L, Huang W et al (2017) A ratiometric fluorescent probe for selective detection of hypochlorite anion. Bull Korean Chem Soc 38:1443–1446. https://doi.org/10.1002/bkcs.11321

    Article  CAS  Google Scholar 

  160. Sain D, Goswami S, Das Mukhopadhyay C (2017) Intracellular detection of toxic hypochlorite anion by using a nontoxic rhodamine based sensor. J Indian Chem Soc 94:673–680

    CAS  Google Scholar 

  161. Wu L, Shi Y, Yu H et al (2021) Bromination-induced spirocyclization of rhodamine dyes affording a FRET-based ratiometric fluorescent probe for visualization of hypobromous acid (HOBr) in live cells and zebrafish. Sensors Actuators B Chem 337:129790. https://doi.org/10.1016/j.snb.2021.129790

    Article  CAS  Google Scholar 

  162. Zhou Z, Yuan X, Long D et al (2021) A pyridine-Si-rhodamine-based near-infrared fluorescent probe for visualizing reactive oxygen species in living cells. Spectrochim Acta - Part A Mol Biomol Spectrosc 246:118927. https://doi.org/10.1016/j.saa.2020.118927

    Article  CAS  Google Scholar 

  163. Ambikapathi G, Kempahanumakkagari SK, Ramappa Lamani B et al (2013) Bioimaging of peroxynitrite in MCF-7 Cells by a new fluorescent probe rhodamine b phenyl hydrazide. J Fluoresc 23:705–712. https://doi.org/10.1007/s10895-013-1205-y

    Article  CAS  PubMed  Google Scholar 

  164. Peng T, Chen X, Gao L et al (2016) A rationally designed rhodamine-based fluorescent probe for molecular imaging of peroxynitrite in live cells and tissues. Chem Sci 7:5407–5413. https://doi.org/10.1039/c6sc00012f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Miao J, Huo Y, Shi H et al (2018) A Si-rhodamine-based near-infrared fluorescent probe for visualizing endogenous peroxynitrite in living cells, tissues, and animals. J Mater Chem B 6:4466–4473. https://doi.org/10.1039/c8tb00987b

    Article  CAS  PubMed  Google Scholar 

  166. Zhang X, Chen Y, Liu C et al (2019) A novel hexahydropyridazin-modified rhodamine fluorescent probe for tracing endogenous/exogenous peroxynitrite in live cells and zebrafish. Dye Pigment 170:107573. https://doi.org/10.1016/j.dyepig.2019.107573

    Article  CAS  Google Scholar 

  167. Mao GJ, Gao GQ, Dong WP et al (2021) A two-photon excited near-infrared fluorescent probe for imaging peroxynitrite during drug-induced hepatotoxicity and its remediation. Talanta 221:. https://doi.org/10.1016/j.talanta.2020.121607

  168. Xia Q, Feng S, Hong J, Feng G (2021) One probe for multiple targets: A NIR fluorescent rhodamine-based probe for ONOO− and lysosomal pH detection in live cells. Sensors Actuators B Chem 337:129732. https://doi.org/10.1016/j.snb.2021.129732

    Article  CAS  Google Scholar 

  169. Yu H, Jin L, Dai Y et al (2013) From a BODIPY-rhodamine scaffold to a ratiometric fluorescent probe for nitric oxide. New J Chem 37:1688–1691. https://doi.org/10.1039/c3nj41127c

    Article  CAS  Google Scholar 

  170. Meng Q, Zhang Y, Hou D et al (2013) Fluorimetric and colorimetric detection of nitric oxide in living cells by rhodamine derivatives assisted by Cu2+. Tetrahedron 69:636–641. https://doi.org/10.1016/j.tet.2012.11.010

    Article  CAS  Google Scholar 

  171. Huo Y, Miao J, Han L et al (2017) Selective and sensitive visualization of endogenous nitric oxide in living cells and animals by a Si-rhodamine deoxylactam-based near-infrared fluorescent probe. Chem Sci 8:6857–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mao Z, Jiang H, Song X et al (2017) Development of a silicon-rhodamine based near-infrared emissive two-photon fluorescent probe for nitric oxide. Anal Chem 89:9620–9624. https://doi.org/10.1021/acs.analchem.7b02697

    Article  CAS  PubMed  Google Scholar 

  173. Wang Q, Jiao X, Liu C et al (2018) A rhodamine-based fast and selective fluorescent probe for monitoring exogenous and endogenous nitric oxide in live cells. J Mater Chem B 6:4096–4103. https://doi.org/10.1039/c8tb00646f

    Article  CAS  PubMed  Google Scholar 

  174. Alam R, Islam ASM, Sasmal M et al (2018) A rhodamine-based turn-on nitric oxide sensor in aqueous medium with endogenous cell imaging: An unusual formation of nitrosohydroxylamine. Org Biomol Chem 16:3910–3920. https://doi.org/10.1039/c8ob00822a

    Article  CAS  PubMed  Google Scholar 

  175. Jiang WL, Li Y, Liu HW et al (2019) A rhodamine-deoxylactam based fluorescent probe for fast and selective detection of nitric oxide in living cells. Talanta 197:436–443. https://doi.org/10.1016/j.talanta.2019.01.061

    Article  CAS  PubMed  Google Scholar 

  176. Tavallali H, Deilamy-Rad G, Parhami A, Hasanli N (2014) A novel cyanide-selective colorimetric and fluorescent chemosensor: First molecular security keypad lock based on phosphotungstic acid and CN- inputs. J Hazard Mater 266:189–197. https://doi.org/10.1016/j.jhazmat.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  177. Pei PX, Hu JH, Ni PW et al (2017) A novel dual-channel chemosensor for CN- based on rhodamine B hydrazide derivatives and its application in bitter almondf. RSC Adv 7:46832–46838. https://doi.org/10.1039/c7ra09174e

    Article  CAS  Google Scholar 

  178. Mehta R, Luxami V (2020) A Novel ‘On-Off’ rhodamine based sensor for colorimetric detection of CN−and its application as encoder-decoder and molecular keypad lock. ChemistrySelect 5:13429–13438. https://doi.org/10.1002/slct.202002987

    Article  CAS  Google Scholar 

  179. Sivaraman G, Chellappa D (2013) Rhodamine based sensor for naked-eye detection and live cell imaging of fluoride ions. J Mater Chem B 1:5768–5772. https://doi.org/10.1039/C3TB21041C

    Article  CAS  PubMed  Google Scholar 

  180. Mandal S, Sahana A, Banerjee A et al (2015) A smart rhodamine-pyridine conjugate for bioimaging of thiocyanate in living cells. RSC Adv 5:103350–103357. https://doi.org/10.1039/c5ra21838a

    Article  CAS  Google Scholar 

  181. Roy S, Maity A, Mudi N et al (2019) Rhodamine scaffolds as real time chemosensors for selective detection of bisulfite in aqueous medium. Photochem Photobiol Sci 18:1342–1349. https://doi.org/10.1039/c8pp00558c

    Article  CAS  PubMed  Google Scholar 

  182. Wu WH, Dong JJ, Wang X et al (2012) Fluorogenic and chromogenic probe for rapid detection of a nerve agent simulant DCP. Analyst 137:3224–3226. https://doi.org/10.1039/c2an35428d

    Article  CAS  PubMed  Google Scholar 

  183. Wu Z, Wu X, Yang Y et al (2012) A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant. Bioorganic Med Chem Lett 22:6358–6361. https://doi.org/10.1016/j.bmcl.2012.08.077

    Article  CAS  Google Scholar 

  184. Georgiev NI, Bojinov VB, Venkova AI (2013) Design, synthesis and pH sensing properties of novel PAMAM light-harvesting dendrons based on rhodamine 6G and 1,8-naphthalimide. J Fluoresc 23:459–471. https://doi.org/10.1007/s10895-013-1168-z

    Article  CAS  PubMed  Google Scholar 

  185. Said AI, Georgiev NI, Bojinov VB (2022) A novel dual naked eye colorimetric and fluorescent pH chemosensor and its ability to execute three INHIBIT based digital comparator. Dye Pigment 205:110489. https://doi.org/10.1016/j.dyepig.2022.110489

    Article  CAS  Google Scholar 

  186. Georgiev NI, Asiri AM, Qusti AH et al (2014) A pH sensitive and selective ratiometric PAMAM wavelength-shifting bichromophoric system based on PET, FRET and ICT. Dye Pigment 102:35–45. https://doi.org/10.1016/j.dyepig.2013.10.007

    Article  CAS  Google Scholar 

  187. Georgiev NI, Asiri AM, Alamry KA et al (2014) Selective ratiometric pH-sensing PAMAM light-harvesting dendrimer based on Rhodamine 6G and 1,8-naphthalimide. J Photochem Photobiol A Chem 277:62–74. https://doi.org/10.1016/j.jphotochem.2013.12.005

    Article  CAS  Google Scholar 

  188. Alamry KA, Georgiev NI, El-Daly SA et al (2015) A highly selective ratiometric fluorescent pH probe based on a PAMAM wavelength-shifting bichromophoric system. Spectrochim Acta - Part A Mol Biomol Spectrosc 135:792–800. https://doi.org/10.1016/j.saa.2014.07.076

    Article  CAS  Google Scholar 

  189. Alamry KA, Georgiev NI, El-Daly SA et al (2015) A ratiometric rhodamine-naphthalimide pH selective probe built on the basis of a PAMAM light-harvesting architecture. J Lumin 158:50–59. https://doi.org/10.1016/j.jlumin.2014.09.014

    Article  CAS  Google Scholar 

  190. Georgiev NI, Dimitrova MD, Asiri AM et al (2015) Synthesis, sensor activity and logic behaviour of a novel bichromophoric system based on rhodamine 6G and 1,8-naphthalimide. Dye Pigment 115:172–180. https://doi.org/10.1016/j.dyepig.2015.01.001

    Article  CAS  Google Scholar 

  191. Dimitrova MD, Georgiev NI, Bojinov VB (2016) Novel PAMAM dendron as a bichromophoric probe based on rhodamine 6G and 1,8-naphthalimide. J Fluoresc 26:1091–1100. https://doi.org/10.1007/s10895-016-1799-y

    Article  CAS  PubMed  Google Scholar 

  192. Said AI, Georgiev NI, Bojinov VB (2019) A smart chemosensor: Discriminative multidetection and various logic operations in aqueous solution at biological pH. Spectrochim Acta - Part A Mol Biomol Spectrosc 223:117304. https://doi.org/10.1016/j.saa.2019.117304

    Article  CAS  Google Scholar 

  193. Said AI, Georgiev NI, Hamdan SA, Bojinov VB (2019) A chemosensoring molecular lab for various analytes and its ability to execute a molecular logical digital comparator. J Fluoresc 29:1431–1443. https://doi.org/10.1007/s10895-019-02464-3

    Article  CAS  PubMed  Google Scholar 

  194. Li L, Dong X, Li J, Wei J (2020) A short review on NIR-II organic small molecule dyes. Dye Pigment 183:. https://doi.org/10.1016/j.dyepig.2020.108756

  195. Luo S, Zhang E, Su Y et al (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138. https://doi.org/10.1016/j.biomaterials.2011.06.024

    Article  CAS  PubMed  Google Scholar 

  196. Lang W, Cheng G, Peng R, Cao QY (2021) Rhodamine-anchored poly(norbornene) for fluorescent sensing of ATP. Dye Pigment 189:. https://doi.org/10.1016/j.dyepig.2021.109245

  197. Li M, Zhang S, Zhang P et al (2022) Rhodamine functionalized cellulose for mercury detection and removal: A strategy for providing in situ fluorimetric and colorimetric responses. Chem Eng J 436:. https://doi.org/10.1016/j.cej.2022.135251

  198. Lang W, Zhou F, Chen Y, Cao QY (2022) A new poly(norbornene)-based sensor for fluorescent ratiometric sensing of adenosine 5′-triphosphate. Dye Pigment 200:110187. https://doi.org/10.1016/j.dyepig.2022.110187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance provided by Council of Industrial and Scientific Research – HRDG, in the form of Junior Research Fellowship is greatly acknowledged by one of the authors (R. Lalitha).

Funding

The authors Raguraman Lalitha acknowledges the CSIR-HRDG (Council of Scientific and Industrial Research-India) Fellowship scheme for financial support and authors acknowledge the director of National Institute of Technology-Trichy for providing research infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

Raguraman Lalitha: Writing, Review and Editing

Sivan Velmathi: Review and Editing

Corresponding author

Correspondence to Sivan Velmathi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

The images are reprinted with author’s consent to publish.

Competing Interest

The authors state that they have no known competing financial interests or personal ties that could have influenced the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalitha, R., Velmathi, S. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects. J Fluoresc 34, 15–118 (2024). https://doi.org/10.1007/s10895-023-03231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03231-1

Keywords

Navigation