Skip to main content
Log in

A new rhodamine based ‘turn-on’ \(\hbox {Cu}^{2+}\) ion selective chemosensor in aqueous system applicable in bioimaging

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A new rhodamine-based Schiff base (L) has been synthesized and characterized by physicochemical and spectroscopic tools. This organic molecule selectively reacts with \(\hbox {Cu}^{2+}\) ions with a remarkably significant optical change, which supports the development of a chemosensor for \(\hbox {Cu}^{2+}\) ions as low as nanomolar level in aqueous medium. On the basis of the experimental work, the ‘turn-on’ colorimetric/fluorimetric spectroscopic change is due to \(\hbox {Cu}^{2+}\) ion-assisted hydrolysis followed by spirolactam ring opening of the probe (L) in 20 mM HEPES buffer [pH 7.4; water/acetonitrile (9:1 v/v)]. The competitive ions do not affect the selectivity and specificity of the probe (L) in the detection of \(\hbox {Cu}^{2+}\) ions. The cell imaging study using fluorescence microscope showed that this non-cytotoxic probe is useful to detect the distribution of \(\hbox {Cu}^{2+}\) ions in AGS cells lines.

Graphical abstract

A new turn-on non-cytotoxic rhodamine hydrazone derivative (L) senses \(\hbox {Cu}^{2+}\) ion in nano molar region selectively in 20 mM HEPES buffer [pH 7.4; water/acetonitrile (9:1 v/v)] and is an efficient biomarker to detect \(\hbox {Cu}^{2+}\) ions in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jung H S, Kwon P S, Lee J W, Kim J-II, Hong C S, Kim J W, Yan S, Lee J Y, Lee J H, Joo T and Kim J S 2009 Coumarin-derived \(\text{ Cu }^{2+}\)-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells J. Am. Chem. Soc. 131 2008

    Article  CAS  Google Scholar 

  2. Linder M C and Azam M H 1996 Copper biochemistry and molecular biology Am. J. Clin. Nutr. 63 797S

    CAS  Google Scholar 

  3. Uauy R, Olivares M and Gonzalez M 1998 Essentiality of copper in humans Am. J. Clin. Nutr. 67 952S

    CAS  Google Scholar 

  4. Gaggelli E, Kozlowski H, Valensin D and Valensin G 2006 Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s diseases and amyotrophic lateral sclerosis) Chem. Rev. 106 1995

    Article  CAS  Google Scholar 

  5. Zhou Y, Wang F, Kim Y, Kim S-J and Yoon J 2009 \(\text{ Cu }^{2+}\)-selective ratiometric and “Off-On” sensor based on the rhodamine derivative bearing pyrene group Org. Lett. 11 4442

    Article  CAS  Google Scholar 

  6. Royzen M, Dai Z and Canary J W 2005 Ratiometric displacement approach to Cu(II) sensing by fluorescence J. Am. Chem. Soc. 127 1612

    Article  CAS  Google Scholar 

  7. Barnham K J, Masters C L and Bush A I 2004 Neurodegenerative diseases and oxidative stress Nat. Rev. Drug Discovery 3 205

    Article  CAS  Google Scholar 

  8. Hahn S H, Tanner M S, Danke D M and Gahl W A 1995 Normal metallothionein synthesis in fibroblasts obtained from children with indian childhood cirrhosis or copper-associated childhood cirrhosis Biochem. Mol. Med. 54 142

    Article  CAS  Google Scholar 

  9. Brown D R 2001 Copper and prion disease Brain Res. Bull. 55 165

    Article  CAS  Google Scholar 

  10. Waggoner D J, Bartnikas T B and Gitlin J D 1999 The role of copper in neurodegenerative disease Neurobiol. Dis. 6 221

    Article  CAS  Google Scholar 

  11. Vulpe C, Levinson B, Whitney S, Packman S and Gitschier J 1993 Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase Nat. Genet. 3 7

    Article  CAS  Google Scholar 

  12. Sarkar S, Roy S, Sikdar A, Saha R N and Panja S S 2013 A pyrene-based simple but highly selective fluorescence sensor for \(\text{ Cu }^{2+}\) ions via a static excimer mechanism Analyst 138 7119

    Article  CAS  Google Scholar 

  13. EPA US (1991) Maximum contaminant level goals and national primary drinking water regulations for lead and copper; final rule, Federal Register 56, 26460

    Google Scholar 

  14. Yang W, Jaramillo D, Gooding J J, Hibbert D B, Zhang R, Willett G D and Fisher K J 2001 Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes Chem. Commun. 37 1982

    Article  Google Scholar 

  15. Becker J S, Matusch A, Depboylu C, Dobrowolska J and Zoriy M V 2007 Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (Slugs-Genus Arion) measured by laser ablation inductively coupled plasma mass spectrometry Anal. Chem. 79 6074

    Article  CAS  Google Scholar 

  16. Becker J S, Zoriy M, Matusch A, Wu B, Salber D, Palm C and Becker J S 2010 Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) Mass Spectrom. Rev. 29 156

  17. Ensafi A A, Khayamian T, Benvidi A and Mirmomtaz E 2006 Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network Anal. Chim. Acta 561 225

    Article  CAS  Google Scholar 

  18. Zheng Y, Huo Q, Kele P, Andreopoulos F M, Pham S M and Leblanc R M 2001 A new fluorescent chemosensor for copper ions based on tripeptide glycyl-histidyl-lysine (GHK) Org. Lett. 3 3277

    Article  CAS  Google Scholar 

  19. Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S and Lin V S Y 2003 A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules J. Am. Chem. Soc. 125 4451

    Article  CAS  Google Scholar 

  20. Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K and Liu F 2005 Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative Anal. Chem. 77 7294

    Article  CAS  Google Scholar 

  21. Lim M H, Wong B A, Pitcock W H, Mokshagundam D, Baik M-H and Lippard S J 2006 Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes J. Am. Chem. Soc. 128 14364

    Article  CAS  Google Scholar 

  22. Mondal B, Lohar S, Pal S, Maji A and Chattopadhyay P 2015 A new chemosensor selective for \(\text{ Cu }^{2+}\) ions through fluorescence quenching approach applicable to real samples J. Indian Chem. Soc. 92 1867

    CAS  Google Scholar 

  23. Mohammad R G, Tahereh P, Leila H B, Shohre R, Mohammad Y, Maryam R K, Abolghasem M, Hossein A and Mojtaba S 2001 Highly selective and sensitive copper(II) membrane coated graphite electrode based on a recently synthesized Schiff’s base Anal. Chim. Acta 440 81

    Article  Google Scholar 

  24. Klein G, Kaufmann D, Schürch S and Reymond J-L 2001 A fluorescent metal sensor based on macrocyclic chelation Chem. Commun. 37 561

    Article  Google Scholar 

  25. Gatta’s-Asfura K M and Leblanc R M 2003 Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I) Chem. Commun. 39 2684

    Article  Google Scholar 

  26. Rurack K, Kollmannsberger M, Genger U R and Daub J 2000 A selective and sensitive fluoroionophore for \(\text{ Hg }^{{{\rm II}}}\), \(\text{ Ag }^{{{\rm I}}}\), and \(\text{ Cu }^{{{\rm II}}}\) with virtually decoupled fluorophore and receptor units J. Am. Chem. Soc. 122 968

    Article  CAS  Google Scholar 

  27. He G, Zhao X, Zhang X, Fan H, Wu S, Li H, He C and Duan C 2010 A turn-on PET fluorescence sensor for imaging \(\text{ Cu }^{2+}\) in living cells New J. Chem. 34 1055

    Article  CAS  Google Scholar 

  28. Zhao H, Wang Y, Liu Z and Dai B 2014 Specific Cu(II) detection using a novel tricarbazolyl-tristriazolotriazine based on photoinduced charge transfer RSC Adv. 4 13161

  29. Pal S, Sen B, Mukherjee M, Dhara K, Zangrando E, Mandal S K, Khuda-Bukhsh A R and Chattopadhyay P 2014 Effect of substituents on FRET in rhodamine based chemosensors selective for \(\text{ Hg }^{2+}\) ions Analyst 139 1628

    Article  CAS  Google Scholar 

  30. Xu Z, Xiao Y, Qian X, Cui J and Cui D 2005 Ratiometric and selective fluorescent sensor for \(\text{ Cu }^{{{\rm II}}}\) based on internal charge transfer (ICT) Org. Lett. 7 889

    Article  CAS  Google Scholar 

  31. Sen B, Mukherjee M, Banerjee S, Pal S and Chattopadhyay P 2015 A rhodamine-based ‘turn-on’ \(\text{ Al }^{3+}\) ion-selective reporter and the resultant complex as a secondary sensor for \(\text{ F }^{-}\) ion are applicable to living cell staining Dalton Trans. 44 8708

    Article  CAS  Google Scholar 

  32. Dessingiou J, Khedkar J K and Rao C P 2014 Chemosensing ability of hydroxynaphthylidene derivatives of hydrazine towards \(\text{ Cu }^{2+}\): Experimental and computational studies J. Chem. Sci. 126 1135

    Article  CAS  Google Scholar 

  33. Gunupuru R, Maity D, Bhadu G R, Chakraborty A, Srivastava D N and Paul P 2014 Colorimetric detection of \(\text{ Cu }^{2+}\) and \(\text{ Pb }^{2+}\) ions using calix[4]arene functionalized gold nanoparticles J. Chem. Sci. 126 627

    Article  CAS  Google Scholar 

  34. Reddy U G, Ali F, Taye N, Chattopadhyay S and Das A 2015 A new turn on \(Pd^{2+}\)-specific fluorescence probe and its use as an imaging reagent for cellular uptake in Hct116 cells Chem. Commun. 51 3649

    Article  Google Scholar 

  35. Ali F, Saha S, Maity A, Taye N, Si M K, Suresh E, Ganguly B, Chattopadhyay S and Das A 2015 Specific Reagent for Cr(III): Imaging cellular uptake of Cr(III) in Hct116 cells and theoretical rationalization J. Phys. Chem. B 119 13018

    Article  CAS  Google Scholar 

  36. Mahato P, Saha S, Das P, Agarwalla H and Das A 2014 An overview of the recent developments on \(\text{ Hg }^{2+}\) recognition RSC Adv. 4 36140

  37. Praveen L, Saha S, Jewrajka S K and Das A 2013 Self-assembly of modified rhodamine-6G with tri-block copolymer: unusual vesicle formation, pH sensing and dye release properties J. Mater. Chem. B 1 1150

    Article  CAS  Google Scholar 

  38. Mahato P, Saha S, Suresh E, Liddo R D, Parnigotto P P, Conconi M T, Kesharwani M K, Ganguly B and Das A 2012 Ratiometric detection of \(\text{ Cr }^{3+}\) and \(\text{ Hg }^{2+}\) by a naphthalimide-rhodamine based fluorescent probe Inorg. Chem. 51 1769

    Article  CAS  Google Scholar 

  39. Suresh M, Ghosh A and Das A 2008 A simple chemosensor for \(\text{ Hg }^{2+}\) and \(\text{ Cu }^{2+}\) that works as a molecular keypad lock Chem. Commun. 3906

  40. Dujols V, Ford F and Czarnik A W 1997 A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water J. Am. Chem. Soc. 119 7386

    Article  CAS  Google Scholar 

  41. McClintock J L and Ceresa B P 2010 Transforming growth factor-\(\alpha \) enhances corneal epithelial cell migration by promoting EGFR recycling Invest. Opthalmol. Vis. Sci. 51 3455

    Article  Google Scholar 

  42. Banerjee S, Dixit A, Shridharan R N, Karande A A and Chakravarty A R 2014 Endoplasmic reticulum targeted chemotherapeutics: the remarkable photo-cytotoxicity of an oxovanadium(IV) vitamin-B6 complex in visible light Chem. Commun. 50 5590

    Article  CAS  Google Scholar 

  43. Wang S, Wang Z, Yin Y, Luo J and Kong L 2017 Coumarin-naphthol conjugated Schiff base as a “turn-on” fluorescent probe for \(\text{ Cu }^{2+}\) via selective hydrolysis of imine and its application in live cell imaging J. Photochem. Photobiol. A Chem. 333 213

    Article  CAS  Google Scholar 

  44. Sahana S, Mishra G, Sivakumar S and Bharadwaj P K 2017 Highly sensitive and selective “turn-on” chemodosimeter based on \(\text{ Cu }^{2+}\) - promoted hydrolysis for nanomolar detection of \(\text{ Cu }^{2+}\) and its application in confocal cell imaging J. Photochem. Photobiol. A Chem. 334 47

    Article  CAS  Google Scholar 

  45. Wang L, Yan J, Qin W, Liu W and Wang R 2012 A new rhodamine-based single molecule multianalyte (\(\text{ Cu }^{2+}\), \(\text{ Hg }^{2+}\)) sensor and its application in the biological system Dyes Pigm. 92 1083

    Article  CAS  Google Scholar 

  46. Pal S, Lohar S, Mukherjee M, Chattopadhyay P and Dhara K 2016 A fluorescent probe for the selective detection of creatinine in aqueous buffer applicable to human blood serum Chem. Commun. 52 13706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance from Department of Science and Technology, Govt. of West Bengal (DST, GoWB, vide Project No. 698 (Sanc.)/ST/P/S & T/15-G/2015) is gratefully acknowledged. S. Lohar is thankful to UGC, New Delhi, India for a fellowship. The authors are indebted to Dr. Abhishek Mukherjee, Indian Institute of Chemical Biology, Kolkata for cell imaging and cell viability study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabitra Chattopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 691 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, A., Lohar, S., Pal, S. et al. A new rhodamine based ‘turn-on’ \(\hbox {Cu}^{2+}\) ion selective chemosensor in aqueous system applicable in bioimaging. J Chem Sci 129, 1423–1430 (2017). https://doi.org/10.1007/s12039-017-1349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1349-4

Keywords

Navigation