Skip to main content
Log in

A Study on the Luminescent Terbium(III) and Pyridine 2,6 Dicarboxylate Complexes by Experimental and TD-DFT Approaches

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Tb3+ luminescence is enhanced by complex formation in aqueous phases as its pyridine 2,6 dicarboxylate (dpa2−) complexes by using experimental spectroscopic techniques and theoretical time-dependent density functional theory (TD-DFT) calculations. The fluorimetric titration of Tb3+ ion with dpa2− ion is followed at λextems = 310/490 nm and 310/545 nm, the emission intensities of which are graphed against the mol ratios of the ligand to metal ion [moles of dpa2−/mol of Tb3+]. Experimental results denote that the tris complex; [Tb(dpa)3]3− is the most stable form at pH > 5.3. Molecular absorption spectra of tris complex shows a batho-chromic shift of 222 nm of dpa2− band to 232 nm accompanied by the hyper-chromic effect at 272 nm band. The luminescence intensities at 490, 545, 592 and 620 nm are enhanced over 100 times in tris complex. The coordination of complexes calculated by thermodynamic cycles and with supporting the experimental result, the most stable form was found to be nine coordinated tris complex; [Tb(dpa)]3−. The theoretical TD-DFT calculations perfectly matched the experimental absorption and emission bands of tris-complex. The novelty of this study is to present the first theoretical calculation of the phosphorescence results and energy transfer process for emission path of Tb3+ and pda2− aqua complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Aspinall HC (2002) Chiral lanthanide complexes: coordination chemistry and applications. Chem Rev 102:1807–1850. https://doi.org/10.1021/cr010288q

    Article  CAS  PubMed  Google Scholar 

  2. a) Georges J, Veiopoulou CJ, Lianidou ES, Ioannou PC, Efstathiou CE (1993) (1996) Comparative study of fluorescent ternary terbium complexes. Application in enzyme amplified fluorimetric immunoassay for α-fetoprotein. Anal Chim Acta 335:177–184. https://doi.org/10.1016/S0003-2670(96)00375-3

  3. Hemmila I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15:529–542. https://doi.org/10.1007/s10895-005-2826-6

    Article  CAS  PubMed  Google Scholar 

  4. Pollak A, Diamandis EP, Makowska B (1995) (1996) The lanthanides as luminescent probes in investigations of biochemical systems. J Photochem Photobiol A: Chem 99:85–92. https://doi.org/10.1016/S1010-6030(96)04417-6

  5. Yuan J, Wang G (2005) Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J Fluoresc 15:559–568. https://doi.org/10.1007/s10895-005-2829-3

    Article  CAS  PubMed  Google Scholar 

  6. Richardson FS (1982) Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82:541–552. https://doi.org/10.1021/cr00051a004

    Article  CAS  Google Scholar 

  7. Zahariev T, Shandurkov D, Gutzov S, Trendafilova N, Enseling D, Jüstel T, Georgieva I (2021) Phenanthroline chromophore as efficient antenna for Tb3+ green luminescence: a theoretical study. Dyes Pigm 185:108890. https://doi.org/10.1016/j.dyepig.2020.108890

    Article  CAS  Google Scholar 

  8. Kong K, Zhang H, Ma R, Chen Y, Chu H, ZhaoY (2013) Synthesis, characterization and enhanced luminescence of terbium complexes with 2-pyrazinecarboxylic acid and butanedioic acid by inert-fluorescent lanthanide ions. J Rare Earths 31:32–36. https://doi.org/10.1016/S1002-0721(12)60230-0

    Article  CAS  Google Scholar 

  9. Juanes O, Rodriguez-Ubis JC, Brunet E, Juanes O, Sedano R, Rodríguez-Ubis JC, Brunet E, Juanes O, Sedano R, Rodríguez-Ubis JC, Brunet E, Juanes O, Sedano R, Rodríguez-Ubis JC, Ubis JC, Sedano R, Barroso G, Juanes O, Brunet E (2007) (1997) Lanthanide complexes of polyacid ligands derived from 2, 6-bis(pyrazol-1-yl)pyridine, pyrazine, and 6, 6′-bis(pyrazol-1-yl)-2, 2′-bipyridine: Synthesis and luminescence properties. Helvetica 80:86–96. https://doi.org/10.1002/hlca.19970800108

  10. Monteiro JHSK, Machado D, de Hollanda LM, Lancellotti M, Sigoli FA, de Bettencourt-Dias A (2017) Selective cytotoxicity and luminescence imaging of cancer cells with a dipicolinato-based EuIII complex. Chem Commun 53:11818–11821. https://doi.org/10.1039/c7cc06753

    Article  CAS  Google Scholar 

  11. a) Law G-L, Wong K-L, Zhou X, Wong W-T, Tanner PA (2005) Crystal structure and luminescence of lanthanide monodentate complexes [Ln(C4N4H6O)2(H2O)6]Cl3 and [Ln(C4N4H6O)2(H2O)3(NO3)3] (Ln = Tb or Eu), Inorganic Chemistry 44(12):4142–4144. https://doi.org/10.1021/ic050115+ b) Hussain S, Chen X, Harrison WTA, Elsegood MR.J, Ahmad S, Li S, Muhammad S, Awoyelu D (2019) Synthesis, crystal structures and photoluminescent properties of one-dimensional Europium(III)- and Terbium(III)-glutarate coordination polymers, and their applications for the sensing of Fe3+ and nitroaromatics. Front Chem 7:728. https://doi.org/10.3389/fchem.2019.00728

  12. Oh Y, Kim YM, Kang SK, Choi JW, Kim WS, Lee JI, Kim SJ, Hur NH (2008) Polymorph selective growth of sodium tetrakis(2-pyridinecarboxylato) lanthanides and their structure sensitive properties, Crystal Growth & Design 8:1364–1371. https://doi.org/10.1021/cg7012705 b) Yun SS, Kang SK, Shu HR, Suh HS, Lee EK, Kim JK, Kim CH (2005) Lanthanide complexes of some high energetic compounds (II), crystal structures and thermal properties of picrate complexes. Bull Korean Chem Soc 26:1197–1202. https://doi.org/10.5012/bkcs.2005.26.8.1197

  13. Su W, Hong M, Chuasaard T, Panyarat K, Rodlamul P, Chainok K, Yimklan S, Rujiwarta A, Yu Q-Y, Cai Y-P, Su C-Y, Lin X-M, Zhou X-X, Cai J-W (2011) (2008) One-, two-, and three-dimensional lanthanide complexes constructed from pyridine-2,6-dicarboxylic acid and oxalic acid ligands. Cryst Growth Des 8:4083–4091. https://doi.org/10.1021/cg800526y

  14. George MR, Golden CA, Grossel MC, Curry RJ (2006) Modified dipicolinic acid ligands for sensitization of Europium(III) luminescence. Inorg Chem 45(4):1739–1744. https://doi.org/10.1021/ic051461u

    Article  CAS  PubMed  Google Scholar 

  15. Rahman MdM, Alsaadi BM, Rosotti FJC, Williams RJP, Hemmila I, Dakubu S, Mukalla VM, Siitari H, Lövgren T (1963) (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137:335–343. https://doi.org/10.1016/0003-2697(84)90095-2 d) Gök E, Ateş S (2001) Fluorimetric detection of insulin in the presence of Eu(III) - {Pyridine-2,6-Dicarboxylate} tris complex. Turkish J Chem 25:81–89

  16. Ni Y, Wu Y (1999) Spectrophotometric determination of Europium, Terbium and Yttrium in a Perchloric Acid Solution by the Kalman Filter Approach. ANAL SCI 15:1123–1127. https://doi.org/10.2116/analsci.15.1123

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Fukuda TK, Hasegawa R, Ishida J, Nakajima M, Honda T, Kitao Y, Nakai O, Vreven H, Montgomery T, Peralta JA Jr, Ogliaro JE, Bearpark F, Heyd M, Brothers JJ, Kudin E, Staroverov KN, Kobayashi VN, Normand R, Raghavachari J, Rendell K, Iyengar ABurantJC, Tomasi SS, Cossi J, Rega M, Millam N, Klene JM, Knox M, Cross JE, Bakken JB, Adamo V, Jaramillo C, Gomperts J, Stratmann R, Yazyev RE, Austin O, Cammi AJ, Pomelli R, Ochterski C, Morokuma JWMRL, Voth KZakrzewskiVG, Salvador GA, Dannenberg P, Dapprich JJ (2009) S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, (Revision C.01), Gaussian, Inc., Wallingford CT,

  18. a) Becke AD, Perdew JP (1988) (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. J Phys Rev B 33:8822–8824. https://doi.org/10.1103/PhysRevB.33.8822

  19. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris JA (1988) Complete basis set model chemistry I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193–2218. https://doi.org/10.1063/1.455064

    Article  CAS  Google Scholar 

  20. a) Dolg M, Stoll H, Preuss HJ, Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (1989) (2007) Basis set exchange: A community database for computational sciences. J Chem Inf Model 47:1045–1052. doi:10.1021/ci600510j

  21. Scuseria GE, Frisch MJ, Casida ME, Jamorski C, Casida KC, Salahub DR, Rao ABP, Palepu NR, Deb DK, Uma A, Chiranjeevi T, Sarkar B, Kaminsky W, Rao KM (1998) (2016) Synthesis, Structural, DFT Studies and Antibacterial Evaluation of Cp∗ Rhodium and Cp∗ Iridium Complexes Using Hydrazide Based Dipyridyl Ketone Ligand. Inorg Chim Acta 443:126–135. https://doi.org/10.1016/j.ica.2015.12.035

  22. Perdew JP, Staroverov VN, Scuseria GE, Tao GE, Perdew J (2003) JP (2003) Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137. https://doi.org/10.1063/1.1626543 [Erratum] (2004) 121:11507(E). https://doi.org/10.1063/1.1795692

  23. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB Initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  CAS  Google Scholar 

  24. Skoog DA, West DM, Holler FJ, Crouch SR (2014) Fundamentals of AnalyticalChemistry, Brooks/Cole

  25. Weibel N, Retailleau P, Ziessel R, Sutton LE (eds) (2006) : Supplement. Chemical Society, London

Download references

Acknowledgements

The presented numerical results were obtained at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources).

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Tugba Tugsuz: Investigation, Writing-original draft, Review&Editing.

Dilek Yüksel: DFT calculations.

Elmas Gökoğlu: Experimental results.

Serdar Ateş: Experimental and theoretical results.

Corresponding author

Correspondence to Tugba Tugsuz.

Ethics declarations

Ethical Approval

No need.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugsuz, T., Yüksel, D., Gökoğlu, E. et al. A Study on the Luminescent Terbium(III) and Pyridine 2,6 Dicarboxylate Complexes by Experimental and TD-DFT Approaches. J Fluoresc 33, 1057–1065 (2023). https://doi.org/10.1007/s10895-022-03130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03130-x

Keywords

Navigation