Skip to main content
Log in

Poly(Azomethine-urethane)-based Fluorescent Chemosensor for the Detection of Cr3+ Cations in Different Water Samples

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A highly selective, and effective poly(azomethine-urethane)-based chemosensor (HIMA) was prepared, and it used as a fluorescent sensor for the detection of Cr3+ cations in different solutions. The HIMA was prepared in two-step reactions by using hexamethylene diisocyanate, 2,4-dihydroxy benzaldehyde, and 2-aminophenol. The sensitivity and selectivity of the fluorescent probe were tested in the presence of different metal ions. The obtained findings indicated that the chemosensor exhibited a quenching effect against the only Cr3+ ion. The limit of detection (LOD) and limit of quantitation (LOQ) of the chemosensor HIMA were calculated as 7.98 × 10–7 M, and 2.42 × 10–6 M, respectively. In addition, the binding constant (Ka) of the chemosensor was calculated as 5.31 × 105 M−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Ge Q, Feng X, Wang R, Zheng R, Luo S, Duan L, Ji Y, Lin J, Chen H (2020) Mixed redox-couple-involved chalcopyrite phase CuFeS2 quantum dots for highly efficient Cr(VI) removal. Environ Sci Technol 54:8022–8031. https://doi.org/10.1021/acs.est.0c01018

    Article  CAS  Google Scholar 

  2. Chen F, Guo S, Wang Y, Ma L, Li B, Song Z, Huang L, Zhang W (2022) Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge. Front Environ Sci Eng 16:57. https://doi.org/10.1007/s11783-021-1491-6

    Article  CAS  Google Scholar 

  3. Zhang X, Yang Z, Mei J, Hu Q, Chang S, Hong Q, Yang S (2022) Outstanding performance of sulfurated titanomaghemite (Fe2TiO5) for hexavalent chromium removal: Sulfuration promotion mechanism and its application in chromium resource recovery. Chemosphere 287:132360. https://doi.org/10.1016/j.chemosphere.2021.132360

    Article  CAS  Google Scholar 

  4. Yang J, Li C, Yang B, Kang S, Zhang Z (2018) Study on adsorption of chromium (VI) by activated carbon from cassava sludge. IOP Conf Ser Earth Environ Sci 128:012017. https://doi.org/10.1088/1755-1315/128/1/012017

    Article  Google Scholar 

  5. Yan BZ, Chen ZF (2019) Influence of pH on Cr(VI) reduction by organic reducing substances from sugarcane molasses. Appl Water Sci 9:61. https://doi.org/10.1007/s13201-019-0940-x

    Article  CAS  Google Scholar 

  6. Nguyen NT, Lee SY, Chen SS, Nguyen NC, Chang CT, Hsiao SS, Trang LT, Kao CY, Lin MF, Wang L (2018) Preparation of Zn doped biochar from sewage sludge for chromium ion removal. J Nanosci Nanotechnol 18:5520–5527. https://doi.org/10.1166/jnn.2018.15392

    Article  CAS  Google Scholar 

  7. Sangsin S, Srivilai P, Tongraung P (2021) Colorimetric detection of Cr3+ in dietary supplements using a smartphone based on EDTA and tannic acid-modified silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 246:119050. https://doi.org/10.1016/j.saa.2020.119050

    Article  CAS  Google Scholar 

  8. Kosla T, Lasocka I, Skibniewska EM, Kolnierzak M, Skibniewski M (2018) Trivalent chromium (Cr III) as a trace element essential for animals and humans. Med Weter 74:560–567. https://doi.org/10.21521/mw.6035

    Article  Google Scholar 

  9. Zarczynska K, Krzebietke S (2018) The effect of chromium on ruminant health. J Elem 25:893–903. https://doi.org/10.5601/jelem.2020.25.1.1963

    Article  Google Scholar 

  10. Lv Z, Tang Y, Dong S, Zhou Q, Cui G (2022) Polyurethane-based polymer electrolytes for lithium batteries: Advances and perspectives. Chem Eng J 430:132659. https://doi.org/10.1016/j.cej.2021.132659

    Article  CAS  Google Scholar 

  11. Cheng BX, Gao WC, Ren XM, Ouyang XY, Zhao Y, Zhao H, Wu W, Huang CX, Liu Y, Liu XY, Li HN, Li RKY (2022) A review of microphase separation of polyurethane: Characterization and applications. Polym Test 107:107489. https://doi.org/10.1016/j.polymertesting.2022.107489

    Article  CAS  Google Scholar 

  12. Lee DW, Kim HN, Lee DS (2018) Design of azomethine diols for efficient self-healing of strong polyurethane elastomers. Molecules 23:2928. https://doi.org/10.3390/molecules23112928

    Article  CAS  Google Scholar 

  13. Kamaci M, Kaya I (2016) New low-band gap polyurethanes containing azomethine bonding: Photophysical, electrochemical, thermal and morphological properties. J Taiwan Inst Chem Eng 59:536–546. https://doi.org/10.1016/j.jtice.2015.08.018

    Article  CAS  Google Scholar 

  14. Kaya I, Yildirim M, Kamaci M (2011) A new kind of optical Mn(II) sensor with high selectivity: Melamine based poly(azomethine–urethane). Synth Met 161:2036–2040. https://doi.org/10.1016/j.synthmet.2011.06.029

    Article  CAS  Google Scholar 

  15. Kaya I, Kamaci M (2013) Highly selective and stable florescent sensor for Cd(II) based on poly(azomethine-urethane). J Fluoresc 23:115–121. https://doi.org/10.1007/s10895-012-1124-3

    Article  CAS  Google Scholar 

  16. Kamaci M, Kaya I (2015) The novel poly(azomethine-urethane): synthesis, morphological properties and application as a fluorescent probe for detection of Zn2+ ions. J Inorg Organomet Polym 25:1250–1259. https://doi.org/10.1007/s10904-015-0234-1

    Article  CAS  Google Scholar 

  17. Avci A, Kaya I (2015) A new selective fluorescent sensor for Zn(II) ions based on poly(azomethine-urethane). Tetrahedron Lett 56:1820–1824. https://doi.org/10.1016/j.tetlet.2015.02.079

    Article  CAS  Google Scholar 

  18. Kamaci M, Kaya I (2015) 2,4-Diamino-6-hydroxypyrimidine based poly(azomethine-urethane): synthesis and application as a fluorescent probe for detection of Cu2+ in aqueous solution. J Fluoresc 25:1339–1349. https://doi.org/10.1007/s10895-015-1624-z

    Article  CAS  Google Scholar 

  19. Kamaci M, Kaya I (2017) A highly selective, sensitive and stable fluorescent chemosensor based on Schiff base and poly(azomethine-urethane) for Fe3+ ions. J Ind Eng Chem 46:234–243. https://doi.org/10.1016/j.jiec.2016.10.035

    Article  CAS  Google Scholar 

  20. Kamaci M, Kaya I (2019) Polymeric fluorescent film sensor based on poly(azomethine-urethane): Ion sensing and surface properties. React Funct Polym 136:1–8. https://doi.org/10.1016/j.reactfunctpolym.2018.12.021

    Article  CAS  Google Scholar 

  21. Duru Kamaci U, Kamaci M, Peksel A (2019) Poly(azomethine-urethane) and zeolite-based composite: Fluorescent biosensor for DNA detection. Spectrochim Acta A Mol Biomol Spectrosc 212:232–239. https://doi.org/10.1016/j.saa.2019.01.011

    Article  CAS  Google Scholar 

  22. Kaya I, Kamaci M (2012) Novel poly(azomethine-urethane)s and their polyphenol derivatives derived from aliphatic diisocyanate compound: synthesis and thermal characterization. J Appl Polym Sci 125:876–887. https://doi.org/10.1002/app.36251

    Article  CAS  Google Scholar 

  23. Kaya I, Solak E, Kamaci M (2021) Synthesis and multicolor, photophysical, thermal, and conductivity properties of poly(imine)s. J Taiwan Inst Chem Eng 123:328–337. https://doi.org/10.1016/j.jtice.2021.05.010

    Article  CAS  Google Scholar 

  24. Kamaci M, Kaya I (2014) Photophysical, electrochemical, thermal and morphological properties of polyurethanes containing azomethine bonding. J Macromol Sci A 51:805–819. https://doi.org/10.1080/10601325.2014.937129

    Article  CAS  Google Scholar 

  25. Kolcu F, Erdener D, Kaya I (2021) Synthesis and characterization of a highly selective turn-on fluorescent chemosensor for Sn2+ derived from diimine Schiff base. Synthetic Met 272:116668. https://doi.org/10.1016/j.synthmet.2020.116668

    Article  CAS  Google Scholar 

  26. Feng E, Fan C, Wang N, Liu G, Pu S (2018) A highly selective diarylethene chemosensor for colorimetric detection of CN and fluorescent relay-detection of Al3+/Cr3+. Dyes Pigm 151:22–27. https://doi.org/10.1016/j.dyepig.2017.12.041

    Article  CAS  Google Scholar 

  27. Duru Kamaci U, Kamaci M, Peksel A (2021) A dual responsive colorimetric sensor based on polyazomethine and ascorbic acid for the detection of Al (III) and Fe (II) ions. Spectrochim Acta A Mol Biomol Spectrosc 254:119650. https://doi.org/10.1016/j.saa.2021.119650

    Article  CAS  Google Scholar 

  28. Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21–25. https://doi.org/10.4103/2229-5186.79345

    Article  Google Scholar 

  29. Jofre LG, Cepeda RIC (2016) Effects of Cr3+ ions on electrophysiological parameters of isolated skin of toad Pleurodema thaul. J Adv Pharm Technol Res 7:87–90. https://doi.org/10.4103/2231-4040.184587

    Article  CAS  Google Scholar 

  30. Mohanasundaram D, Bhaskar R, Lenin N, Nehru K, Rajagopal G, Kumar GGV, Rajesh J (2022) A simple triphenylamine based turn-off fluorescent sensor for copper (II) ion detection in semi-aqueous solutions. J Photochem Photobiol A 427:113850. https://doi.org/10.1016/j.jphotochem.2022.113850

    Article  CAS  Google Scholar 

  31. Chalmardi GB, Tajbakhsh M, Hasani N, Bekhradnia A (2018) A new Schiff-base as fluorescent chemosensor for selective detection of Cr3+: An experimental and theoretical study. Tetrahedron 74:2251–2260. https://doi.org/10.1016/j.tet.2018.03.046

    Article  CAS  Google Scholar 

  32. Paul S, Goswami S, Manna A (2015) A differentially selective molecular probe for detection of trivalent ions (Al3+, Cr3+ and Fe3+) upon single excitation in mixed aqueous medium. Dalton Trans 44:11805–11810. https://doi.org/10.1039/C5DT01314C

    Article  CAS  Google Scholar 

  33. Mehata MS (2021) An efficient excited-state proton transfer fluorescence quenching based probe (7-hydroxyquinoline) for sensing trivalent cations in aqueous environment. J Mol Liq 326:115379. https://doi.org/10.1016/j.molliq.2021.115379

    Article  CAS  Google Scholar 

  34. Hu T, Wang L, Li J, Zhao Y, Cheng J, Li W, Chang Z, Sun C (2021) A new fluorescent sensor L based on fluorene-naphthalene Schiff base for recognition of Al3+ and Cr3+. Inorg Chim Acta 524:120421. https://doi.org/10.1016/j.ica.2021.120421

    Article  CAS  Google Scholar 

  35. Krishnan U, Iyer SK (2022) Iminothiophenol Schiff base-based fluorescent probe for dual detection of Hg2+ and Cr3+ ions and its application in real sample analysis. J Photochem Photobiol A Chem 425:113663. https://doi.org/10.1016/j.jphotochem.2021.113663

    Article  CAS  Google Scholar 

  36. Das B, Ghosh A, Dorairaj DP, Dolai M, Karvembu R, Mabhai S, Im H, Dey S, Jana A, Misra A (2022) Multiple ion (Al3+, Cr3+, Fe3+, and Cu2+) sensing using a cell-compatible rhodamine-phenolphthalein-derived Schiff-base probe. J Mol Liq 354:118824. https://doi.org/10.1016/j.molliq.2022.118824

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Musa Kamaci is the single author of this manuscript. He has solely designed the manuscript.

Corresponding author

Correspondence to Musa Kamaci.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The author also declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaci, M. Poly(Azomethine-urethane)-based Fluorescent Chemosensor for the Detection of Cr3+ Cations in Different Water Samples. J Fluoresc 33, 53–59 (2023). https://doi.org/10.1007/s10895-022-03037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03037-7

Keywords

Navigation