Skip to main content
Log in

A New Fluorescent “Turn-Off” Coumarin-Based Chemosensor: Synthesis, Structure and Cu-Selective Fluorescent Sensing in Water Samples

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report the synthesis and characterization two coumarin-based fluorescence probes, N′-{[7-(diethylamino)-2-oxo-2H-chromen-3-yl]carbonyl}pyridine-3-carbohydrazide (3) and N′-benzoyl-7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide (4), proposed as a novel fluorescent chemosensor. The two probes designed showed an instant turn-off fluorescence response to Cu2+ over other metal ions in ethanol-water mixture based on intramolecular charge transfer (ICT). It was found that pyridine-analogue coumarin is highly selective and sensitive sensor for Cu2+. The 3 sensor coordinates Cu2+ in 1:1 stoichiometry with a binding constant, Ka = 5.22 M−1 and the detection limit was calculated 1.97 × 10−9 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yokel RA (2002) Brain uptake, retention, and efflux of aluminum and manganese. Environ Health Perspect 110:699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yasui M, Kihira T, Ota K (1992) Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13:593–600

    CAS  PubMed  Google Scholar 

  3. Helal A, Or Rashid MH, Choi C-H, Kim H-S (2011) Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 67:2794–2802. doi:10.1016/j.tet.2011.01.093

    Article  CAS  Google Scholar 

  4. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Heal Part B 4:341–394. doi:10.1080/109374001753146207

  5. Rafter GW (1987) Rheumatoid arthritis: a disturbance in copper homeostasis. Med Hypotheses 22:245–249. doi:10.1016/0306-9877(87)90190-3

    Article  CAS  PubMed  Google Scholar 

  6. Yang J, Yuan Z, Yu G et al (2016) Single chemosensor for double analytes: spectrophotometric sensing of Cu2+ and fluorogenic sensing of Al3+ under aqueous conditions. J Fluoresc 26:43–51. doi:10.1007/s10895-015-1710-2

    Article  CAS  PubMed  Google Scholar 

  7. Kong F, Liu Q, Wu X et al (2011) 2-(4-Formylphenyl)phenanthroimidazole as a colorimetric and fluorometric probe for selective fluoride ion sensing. J Fluoresc 21:1331–1335. doi:10.1007/s10895-011-0858-7

    Article  CAS  PubMed  Google Scholar 

  8. Tang R, Lei K, Chen K et al (2011) A rhodamine-based off–on fluorescent chemosensor for selectively sensing Cu(II) in aqueous solution. J Fluoresc 21:141–148. doi:10.1007/s10895-010-0698-x

    Article  CAS  PubMed  Google Scholar 

  9. Yuan C, Liu B, Liu F et al (2014) Fluorescence “turn on” detection of mercuric ion based on Bis(dithiocarbamato)copper(II) complex functionalized carbon Nanodots. Anal Chem 86:1123–1130. doi:10.1021/ac402894z

    Article  CAS  PubMed  Google Scholar 

  10. Salinas-Castillo A, Ariza-Avidad M, Pritz C et al (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49:1103. doi:10.1039/c2cc36450f

    Article  CAS  Google Scholar 

  11. Wang F, Gu Z, Lei W et al (2014) Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensors Actuators B Chem 190:516–522. doi:10.1016/j.snb.2013.09.009

    Article  CAS  Google Scholar 

  12. Tang B, Niu J, Yu C et al (2005) Highly luminescent water-soluble CdTe nanowires as fluorescent probe to detect copper(ii). Chem Commun 4184. doi:10.1039/b502978c

  13. Mu S, Chang JC, Lee S-T (2008) Silicon nanowires-based fluorescence sensor for Cu(II). Nano Lett 8:104–109. doi:10.1021/nl072164k

    Article  CAS  PubMed  Google Scholar 

  14. Bekhradnia A, Domehri E, Khosravi M (2016) Novel coumarin-based fluorescent probe for selective detection of Cu(II). Spectrochim Acta Part A Mol Biomol Spectrosc 152:18–22. doi:10.1016/j.saa.2015.07.029

    Article  CAS  Google Scholar 

  15. Song Z-K, Dong B, Lei G-J et al (2013) Novel selective fluorescent probes for sensing Zn2+ ions based on a coumarin Schiff-base. Tetrahedron Lett 54:4945–4949. doi:10.1016/j.tetlet.2013.07.015

    Article  CAS  Google Scholar 

  16. Wang H, Guo LE, Li XM et al (2015) Coumarin-based turn-on fluorescence probes for highly selective detection of Pi in cell culture and Caenorhabditis elegans. Dyes Pigments 120:293–298. doi:10.1016/j.dyepig.2015.04.031

    Article  CAS  Google Scholar 

  17. Lin W, Yuan L, Cao X et al (2008) A coumarin-based chromogenic sensor for transition-metal ions showing ion-dependent bathochromic shift. Eur J Org Chem 2008:4981–4987. doi:10.1002/ejoc.200800667

    Article  Google Scholar 

  18. Khatua S, Choi SH, Lee J et al (2009) Highly selective fluorescence detection of Cu 2+ in water by chiral dimeric Zn 2+ complexes through direct displacement. Inorg Chem 48:1799–1801. doi:10.1021/ic802314u

    Article  CAS  PubMed  Google Scholar 

  19. Ma Y, Chen H, Wang F et al (2014) A highly sensitive and selective ratiometric fluorescent sensor for Zn2+ ion based on ICT and FRET. Dyes Pigments 102:301–307. doi:10.1016/j.dyepig.2013.11.011

    Article  CAS  Google Scholar 

  20. Katritzky A, Ibrahim T, Tala S et al (2011) Synthesis of coumarin conjugates of biological thiols for fluorescent detection and estimation. Synthesis-Stuttgart 2011:1494–1500. doi:10.1055/s-0030-1259991

    Article  Google Scholar 

  21. Kahveci B, Yilmaz F, Mentese E, Ülker S (2015) Microwave-assisted synthesis of some new coumarin derivatives including 1,2,4-triazol-3-one and investigation of their biological activities. Chem Heterocycl Compd 51:447–456. doi:10.1007/s10593-015-1714-5

    Article  CAS  Google Scholar 

  22. Ma L, Xu Y, Wang K et al (2015) Synthesis and recognition properties for copper ions and cyanide anions of two coumarin hydrazide compounds. Inorg Chem Commun. doi:10.1016/j.inoche.2015.05.019

    Google Scholar 

  23. Lin W, Yuan L, Cao Z et al (2009) Fluorescence enhancement of coumarin–quinoline by transition metal ions: detection of paramagnetic Ni2+ and Co2+. Dyes Pigments 83:14–20. doi:10.1016/j.dyepig.2009.03.006

    Article  CAS  Google Scholar 

  24. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38:1330. doi:10.1039/b802352m

    Article  CAS  PubMed  Google Scholar 

  25. Mukherjee S, Talukder S (2016) A coumarin-based luminescent chemosensor for recognition of Cu2+ and its In-situ complex for CN− sensing via Cu2+ displacement approach. J Fluoresc. doi:10.1007/s10895-016-1974-1

    Google Scholar 

  26. Karuk Elmas ŞN, Ozen F, Koran K et al (2016) Coumarin based highly selective “off-on-off” type novel fluorescent sensor for Cu2+ and S2− in aqueous solution. J Fluoresc. doi:10.1007/s10895-016-1972-3

    PubMed  Google Scholar 

  27. Yeh J-T, Chen W-C, Liu S-R, Wu S-P (2014) A coumarin-based sensitive and selective fluorescent sensor for copper(ii) ions. New J Chem 38:4434. doi:10.1039/C4NJ00695J

    Article  CAS  Google Scholar 

  28. Razi SS, Srivastava P, Ali R et al (2015) A coumarin-derived useful scaffold exhibiting Cu2+ induced fluorescence quenching and fluoride sensing (on-off-on) via copper displacement approach. Sensors Actuators B Chem 209:162–171. doi:10.1016/j.snb.2014.11.082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Recep Tayyip Erdogan University Scientific Research Project Unit (RTEUBAP) under the project number of FBA-2016-662. The authors thank all the colleagues in the project unit for their supportive attitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaan Karaoglu.

Electronic supplementary material

ESM 1

(DOC 684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaoglu, K., Yilmaz, F. & Menteşe, E. A New Fluorescent “Turn-Off” Coumarin-Based Chemosensor: Synthesis, Structure and Cu-Selective Fluorescent Sensing in Water Samples. J Fluoresc 27, 1293–1298 (2017). https://doi.org/10.1007/s10895-017-2062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2062-x

Keywords

Navigation