Skip to main content

Advertisement

Log in

Furan and Julolidine-Based “Turn-on” Fluorescence Chemosensor for Detection of F in a Near-Perfect Aqueous Solution

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new fluorescent sensor 1, containing furan and julolidine moieties linked through a Schiff-base, has been synthesized. Distinct “turn-on” fluorescence enhancement of 1 was observed upon the addition of F in a near-perfect aqueous solution. The binding capabilities of 1 with F were studied by using fluorescent spectroscopic techniques, ESI-mass analysis and NMR titration measurements. The detection limit for the analysis of F was found to be 10.02 μM, which is below the WHO guideline (79 μM) for drinking water. Practically, the sensing ability of 1 for F was successfully applied in real water samples. The sensing mechanism for F was proposed to be the ICT mechanism via the hydrogen bonding, which was well explained by theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Mizukami S, Nagano T, Urano Y, Odani A, Kikuchi K (2002) A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J Am Chem Soc 124:3920–3925

    Article  CAS  PubMed  Google Scholar 

  2. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  3. Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martinez-Manez R, Sancenon F (2013) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem Soc Rev 42:3489–3613

    Article  CAS  PubMed  Google Scholar 

  4. Lee SA, You GR, Choi YW, Jo HY, Kim AR, Noh I, Kim S-J, Kim Y, Kim C (2014) A new multifunctional Schiff base as a fluorescence sensor for Al3+ and a colorimetric sensor for CN in aqueous media: an application to bioimaging. Dalton Trans 43:6650–6659

    Article  CAS  PubMed  Google Scholar 

  5. Song EJ, Kim H, Hwang IH, Kim KB, Kim AR, Noh I, Kim C (2014) A single fluorescent chemosensor for multiple target ions: recognition of Zn2+ in 100% aqueous solution and F- in organic solvent. Sensors Actuators B Chem 195:36–43

    Article  CAS  Google Scholar 

  6. Park GJ, Hwang IH, Song EJ, Kim H, Kim C (2014) A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 70:2822–2828

    Article  CAS  Google Scholar 

  7. Zhou Z, Wang Q, Tan C (2014) Soft matter anion sensing based on lanthanide (Eu 3+ and TB 3+ ) luminescent hydrogels. Soft Mater 12:98–102

    Article  CAS  Google Scholar 

  8. Ji X, Yao Y, Li J, Yan X, Huang F (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135:74–77

    Article  CAS  PubMed  Google Scholar 

  9. Caballero A, Zapata F, Beer PD (2013) Interlocked host molecules for anion recognition and sensing. Coord Chem Rev 257:2434–2455

    Article  CAS  Google Scholar 

  10. Rostami A, Taylor MS (2012) Polymers for anion recognition and sensing. Macromol Rapid Commun 33:21–34

    Article  CAS  PubMed  Google Scholar 

  11. Browne D, Whelton H, O’Mullane D (2005) Fluoride metabolism and fluorosis. J Dent 33:177–186

    Article  CAS  PubMed  Google Scholar 

  12. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Guten U, Werli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  PubMed  Google Scholar 

  13. Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S (2012) Fluoride in drinking water and Defluoridation of water. Chem Rev 112:2454–2466

    Article  CAS  PubMed  Google Scholar 

  14. Graham N (1999) Guidelines for drinking-water quality, 2nd edition, addendum to volume 1 – recommendations, World Health Organisation, Geneva, 1998, 36 pages. Urban Water 1:183

    Google Scholar 

  15. Ryu HH, Lee YJ, Kim SE, Jo TG, Kim C (2016) A colorimetric F chemosensor with high selectivity: experimental and theoretical studies. J Incl Phenom Macrocycl Chem 86:111–119

    Article  CAS  Google Scholar 

  16. Lee JH, Lee SH, So YA, Park GJ, Kim C (2015) Simultaneous detection of F and CN by a simple colorimetric Chemosensor with high selectivity. Bull Kor Chem Soc 36:1618–1624

    Article  CAS  Google Scholar 

  17. Lee HJ, Park SJ, Sin HJ, Na YJ, Kim C (2015) A selective colorimetric chemosensor with an electron-withdrawing group for multi-analytes CN and F . New J Chem 39:3900–3907

    Article  CAS  Google Scholar 

  18. Lee M, Jo S, Lee D, Xu Z, Yoon J (2015) A new naphthalimide derivative as a selective fluorescent and colorimetric sensor for fluoride, cyanide and CO2. Dyes Pigments 120:288–292

    Article  CAS  Google Scholar 

  19. Cho J, Kim I, Moon JH, Jung HS, Kim JS (2016) Triazolium-promoted highly selective fluorescence “turn-on” detection of fluoride ions. Dyes Pigments 132:248–254

    Article  CAS  Google Scholar 

  20. Park JJ, Kim Y-H, Kim C, Kang J (2011) Naked eye detection of fluoride and pyrophosphate with an anion receptor utilizing anthracene and nitrophenyl group as signaling group. Tetrahedron Lett 52:2759–2763

    Article  CAS  Google Scholar 

  21. Kang J, Lee YJ, Lee SK, Park JJ, Kim Y, Kim SJ, Kim C (2010) A naked-eye detection of fluoride with urea/thiourea receptors which have both a benzophenone group and a nitrophenyl group as a signalling group. Supramol Chem 22:267–273

    Article  CAS  Google Scholar 

  22. Yoo M, Park S, Kim H-J (2016) Activatable colorimetric and fluorogenic probe for fluoride detection by oxazoloindole-to-hydroxyethylindolium transformation. RSC Adv 6:19910–19915

    Article  CAS  Google Scholar 

  23. Rao KS, Balaji T, Rao TP, Babu Y, Naidu GRK (2002) Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma- atomic emission spectrometry. Spectrochim Acta Part B-atomic Spectrosc 57:1333–1338

    Article  Google Scholar 

  24. Sturgeon RE, Berman SS, Desaulniers A, Russell DS (1979) Determination of iron, manganese, and zinc in seawater by graphite furnace atomic absorption spectrometry. Anal Chem 51:2364–2369

    Article  CAS  Google Scholar 

  25. Gulaboski R, Mireski V, Scholz F (2002) An electrochemical method for determination of the standard Gibbs energy of anion transfer between water and n-octanol. Electrochem Commun 4:277–283

    Article  CAS  Google Scholar 

  26. Montoya LA, Pluth MD (2012) ChemComm selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells w. 4767-4769

  27. Park GJ, Jo HY, Ryu KY, Kim C (2014) A new coumarin-based chromogenic chemosensor for the detection of dual analytes al 3+ and F . RSC Adv 4:63882–63890

    Article  CAS  Google Scholar 

  28. Sen B, Mukherjee M, Banerjee S, Chattopadhyay P (2015) A rhodamine-based “turn-on” al 3+ ion-selective reporter and the resultant complex as a secondary sensor for F ion are applicable to living cell staining. Dalton Trans 44:8708–8717

    Article  CAS  PubMed  Google Scholar 

  29. Datta BK, Thiyagarajan D, Ramesh A, Das G (2015) A sole multi-analyte receptor responds with three distinct fluorescence signals: traffic signal like sensing of Al3+, Zn2+ and F. Dalton Trans 44:13093–13099

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh K, Panja S, Sarkar T (2015) Rhodamine-linked pyridyl thiourea as a receptor for selective recognition of F, Al3+ and ag+ under different conditions. Supramol Chem 27:490–500

    Article  CAS  Google Scholar 

  31. Kim YS, Lee JJ, Choi YW, Kim C (2016) Simultaneous bioimaging recognition of cation Al3+ and anion F by a fluorogenic method. Dyes Pigments 129:43–53

    Article  CAS  Google Scholar 

  32. Liu H, Zhang B, Tan C, Jiang Y (2016) Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of F and S2− by a simple fluorogenic benzimidazole-based chemosensor. Talanta 161:309–319

    Article  CAS  PubMed  Google Scholar 

  33. Lee JJ, Park GJ, Kim YS, Lee SY, Lee HJ, Noh I, Kim C (2015) A water-soluble carboxylic-functionalized chemosensor for detecting Al3+ in aqueous media and living cells: experimental and theoretical studies. Biosens Bioelectron 69:226–229

    Article  Google Scholar 

  34. Choi YW, Park GJ, Na YJ, Jo HY, Lee SA, You GR, Kim C (2014) A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn(II) and al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors Actuators B Chem 194:343–352

    Article  CAS  Google Scholar 

  35. Jang YK, Nam UC, Kwon HL, Hwang IH, Kim C (2013) A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+. Dyes Pigments 99:6–13

    Article  CAS  Google Scholar 

  36. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim C (2013) A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media. Dalton Trans 42:16569–16577

    Article  CAS  PubMed  Google Scholar 

  37. Yang C, Gong D, Wang X, Deng Y, Guo Y (2016) A new highly copper-selective fluorescence enhancement chemosensor based on BODIPY excitable with visible light and its imaging in living cells. Sensors Actuators B Chem 224:110–117

    Article  CAS  Google Scholar 

  38. Boonkitpatarakul K, Wang J, Niamnont N, Mcdonald L, Pang Y, Sukwattanasinitt M (2016) Novel turn-on fluorescent sensors with mega stokes shifts for dual detection of Al3+ and Zn2+. ACS Sensors 1:144–150

    Article  CAS  Google Scholar 

  39. Hu Y, Ke Q, Yan C, Huang XH, Hu S (2016) A new fluorescence chemosensor for selective detection of copper ion in aqueous solution. Tetrahedron Lett 57:2239–2243

    Article  CAS  Google Scholar 

  40. Choi YW, You GR, Lee JJ, Kim C (2016) Turn-on fluorescent chemosensor for selective detection of Zn2+ in an aqueous solution: experimental and theoretical studies. Inorg Chem Commun 63:35–38

    Article  CAS  Google Scholar 

  41. Lee SY, Bok KH, Kim JA, Kim C (2016) Simultaneous detection of Cu2+ and Cr3+ by a simple Schiff-base colorimetric chemosensor bearing NBD (7-nitrobenzo-2-oxa-1,3-diazolyl) and julolidine moieties. Tetrahedron 72:5563–5570

    Article  CAS  Google Scholar 

  42. Jo HY, Lee SA, Na YJ, Kim C (2015) A colorimetric Schiff base chemosensor for CN by naked-eye in aqueous solution. Inorg Chem Commun 54:73–76

    Article  CAS  Google Scholar 

  43. Lee JJ, Park GJ, Choi YW, Kim C (2015) Detection of multiple analytes (CN and F) based on a simple pyrazine-derived chemosensor in aqueous solution: experimental and theoretical approaches. Sensors Actuators B Chem 207:123–132

    Article  CAS  Google Scholar 

  44. Puthiyedath T, Bahulayan D (2017) A click-generated triazole tethered oxazolone-pyrimidinone dyad: a highly selective colorimetric and ratiometric FRET based fluorescent probe for sensing azide ions. Sensors Actuators B Chem 239:1076–1086

    Article  CAS  Google Scholar 

  45. Kawanishi Y, Kikuchi K, Takakusa H, Nagano T (2000) Design and Synthesis of intramolecular resonance-energy transfer probes for use in Ratiometric measurements in aqueous solution. Angew Chem 39:3438–3440

    Article  CAS  Google Scholar 

  46. Becke AD (1993) Density-functional thermochemistry. III The Role of Exact Exchange J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J.M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Peters CG and JAP (2004) GAUSSIAN 03 (revision B.02). Gaussian, Inc., Wallingford

  49. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  50. Francl MM, Pietro WJ, Hehre WJ, Binkely JS, Gordon MS, Defrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. 23. A polarization-type basis set for 2nd-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  51. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  52. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  53. O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  PubMed  Google Scholar 

  54. Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim 9:113–203

    CAS  Google Scholar 

  55. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  56. Tsui Y-K, Devaraj S, Yen Y-P (2012) Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion. Sensors Actuators B Chem 161:510–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A2A1A11051794 and NRF-2015R1A2A2A09001301) are gratefully acknowledged. This subject is supported by Korea Ministry of Environment (MOE) as "The Chemical Accident Prevention Technology Development Project". We thank Nano-Inorganic Laboratory, Department of Nano & Bio Chemistry, Kookmin University to access the Gaussian 03 program packages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Electronic supplementary material

ESM 1

(DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H.Y., Lee, S.Y. & Kim, C. Furan and Julolidine-Based “Turn-on” Fluorescence Chemosensor for Detection of F in a Near-Perfect Aqueous Solution. J Fluoresc 27, 1457–1466 (2017). https://doi.org/10.1007/s10895-017-2085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2085-3

Keywords

Navigation