Skip to main content

Advertisement

Log in

Functionalised Graphene Quantum Dots for Cholesterol Detection in Human Blood Serum

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The varied applications of nanotechnology have paved way for several breakthroughs in the realm of biomedical technology. In this challenging era when illness multiplies, timely and accurate disease diagnosis is very important. Thus, well founded novel approaches matter very much in areas like disease diagnosis and monitoring. Nanomedicine has tremendous implications in the given context. An elevated cholesterol concentration in blood is risky and is associated with cardiovascular diseases (CVD). CVD remains the No. 1 global cause of death and hence there is an urge to understand cholesterol level and take preventive measures. Highly fluorescent graphene quantum dots (GQs) are well known for their biocompatibility, non toxicity and aqueous solubility. Here in we report an easy and sensitive non enzymatic based cholesterol detection using digitonin conjugated graphene quantum dots (GDG). Selectivity studies and the cholesterol detection in human blood serum suggests the probe to be reliable and selective for blood cholesterol monitoring.

Graphical abstract

Digitonin conjugated fluorescent graphene quantumdots, an efficient probe for cholesterol sensing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Schroeder KL, Goreham RV, Nann T (2016) Graphene quantum dots for Theranostics and bioimaging. Pharm Res 33:2337–2357

    Article  CAS  Google Scholar 

  2. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W (2015) Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale 7:1586–1595

    Article  CAS  Google Scholar 

  3. Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots - emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603

    Article  CAS  Google Scholar 

  4. Kumawat MK, Thakur M, Gurung RB, Srivastava R (2017) Graphene quantum dots from Mangifera indica: application in near-infrared bioimaging and intracellular Nanothermometry. ACS Sustain Chem Eng 5:1382–1391

    Article  CAS  Google Scholar 

  5. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon Nanomaterials for biological imaging and Nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  6. Thakur M, Mewada A, Pandey S, Bhori M, Singh K, Sharon M, Sharon M (2016) Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C Mater Biol Appl 67:468–477

    Article  CAS  Google Scholar 

  7. Thakur M, Kumawat MK, Srivastava R (2017) Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv 7:5251–5261

    Article  CAS  Google Scholar 

  8. Cheng F, An X, Zheng C, Cao S (2015) Green synthesis of fluorescent hydrophobic carbon quantum dots and their use for 2,4,6-trinitrophenol detection. RSC Adv 5:93360–93363

    Article  CAS  Google Scholar 

  9. Sheng Qian Z, Yue Shan X, Jing Chai L, Rong Chen J, Feng H (2014) Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin. Nanotechnology 25:415501

    Article  Google Scholar 

  10. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  Google Scholar 

  11. Dong Y (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon;v. 50:pp. 4738-43-2012 v.50 no.12

  12. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1:4676–4684

    Article  CAS  Google Scholar 

  13. Liu R, Wu D, Feng X, Müllen K (2011) Bottom-up fabrication of Photoluminescent Graphene quantum dots with uniform morphology. J Am Chem Soc 133:15221–15223

    Article  CAS  Google Scholar 

  14. Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M (2013) Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng C Mater Biol Appl 33:2914–2917

    Article  CAS  Google Scholar 

  15. Pandey S, Mewada A, Thakur M, Pillai S, Dharmatti R, Phadke C, Sharon M (2014) Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO2/C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Adv 4:1174–1179

    Article  CAS  Google Scholar 

  16. Nishikawa M, Nojima S, Akiyama T, Sankawa U, Inoue K (1984) Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 96:1231–1239

    Article  CAS  Google Scholar 

  17. Edwards CH, Edwards GA, Gadsden EL (1964) Tomatine and Digitonin as precipitating agents in the estimation of cholesterol. Anal Chem 36:420–421

    Article  CAS  Google Scholar 

  18. Batra N, Tomar M, Gupta V (2015) ZnO-CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosens Bioelectron 67:263–271

    Article  CAS  Google Scholar 

  19. Nauck M, März W, Wieland H (2000) Is lipoprotein(a) cholesterol a significant Indicator of cardiovascular risk? Clin Chem 46:436–437

    Article  CAS  Google Scholar 

  20. Gudbjartsson DF, Thorgeirsson G, Sulem P, Helgadottir A, Gylfason A, Saemundsdottir J, Bjornsson E, Norddahl GL, Jonasdottir A, Jonasdottir A, Eggertsson HP, Gretarsdottir S, Thorleifsson G, Indridason OS, Palsson R, Jonasson F, Jonsdottir I, Eyjolfsson GI, Sigurdardottir O, Olafsson I, Danielsen R, Matthiasson SE, Kristmundsdottir S, Halldorsson BV, Hreidarsson AB, Valdimarsson EM, Gudnason T, Benediktsson R, Steinthorsdottir V, Thorsteinsdottir U, Holm H, Stefansson K (2019) Lipoprotein(a) concentration and risks of cardiovascular disease and diabetes. J Am Coll Cardiol 74:2982–2994

    Article  CAS  Google Scholar 

  21. Zhang M, Yuan R, Chai Y, Chen S, Zhong X, Zhong H, Wang C (2012) A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection. RSC Adv 2:4639–4641

    Article  CAS  Google Scholar 

  22. Lee Y-J, Park J-Y (2010) Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles. Biosens & bioelectron 26:1353–1358

    Article  CAS  Google Scholar 

  23. Li Y, Bai H, Liu Q, Bao J, Han M, Dai Z (2010) A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens & bioelectron 25:2356–2360

    Article  CAS  Google Scholar 

  24. Raj V, Jaime R, Astruc D, Sreenivasan K (2011) Detection of cholesterol by digitonin conjugated gold nanoparticles. Biosens Bioelectron 27:197–200

    Article  CAS  Google Scholar 

  25. Raj V, Vijayan AN, Joseph K (2015) Cysteine capped gold nanoparticles for naked eye detection of E. coli bacteria in UTI patients. Sens Bio-Sens Res 5:33–36

    Article  Google Scholar 

  26. Sun L, Li S, Ding W, Yao Y, Yang X, Yao C (2017) Fluorescence detection of cholesterol using a nitrogen-doped graphene quantum dot/chromium picolinate complex-based sensor. J Mater Chem B 5:9006–9014

    Article  CAS  Google Scholar 

  27. Shanti Krishna A, Radhakumary C, Sreenivasan K (2015) Detection and imaging of fatty plaques in blood vessels using functionalized carbon dots. Anal Methods 7:9482–9488

    Article  CAS  Google Scholar 

  28. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  29. Krishna AS, Nair PA, Radhakumary C, Sreenivasan K (2016) Carbon dot based non enzymatic approach for the detection and estimation of glucose in blood serum. Mater Res Express 3:055001

    Article  Google Scholar 

  30. Gopu CL, Shanti Krishna A, Sreenivasan K (2015) Fluorimetric detection of hypochlorite using albumin stabilized gold nanoclusters. Sensors Actuators B Chem 209:798–802

    Article  CAS  Google Scholar 

  31. Ye Z, Tang R, Wu H, Wang B, Tan M, Yuan J (2014) Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper(ii) ions. New J Chem 38:5721–5726

    Article  CAS  Google Scholar 

  32. Krishna AS, Radhakumary C, Sreenivasan K (2013) In vitro detection of calcium in bone by modified carbon dots. Analyst 138:7107–7111

    Article  CAS  Google Scholar 

  33. Krishna AS, Radhakumary C, Antony M, Sreenivasan K (2014) Functionalized carbon dots enable simultaneous bone crack detection and drug deposition. J Mater Chem B 2:8626–8632

    Article  CAS  Google Scholar 

  34. He YQ, Liu SP, Kong L, Liu ZF (2005) A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta A Mol Biomol Spectrosc 61:2861–2866

    Article  Google Scholar 

  35. Babic M, Horák D, Jendelová P, Glogarová K, Herynek V, Trchova M et al (2009) Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjug Chem 20:283–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Francis Fernandez and Ms. Susan for TEM analysis and CSIR-- NIIST, Trivandrum for HRTEM images.

Code Availibility

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally.

Corresponding author

Correspondence to Shanti Krishna Ayilliath.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare relevant to the content of this article.

Competing Interests

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayilliath, S.K., Nair, S.R., Lakshmi, G.C. et al. Functionalised Graphene Quantum Dots for Cholesterol Detection in Human Blood Serum. J Fluoresc 31, 847–852 (2021). https://doi.org/10.1007/s10895-021-02712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02712-5

Keywords

Navigation