Skip to main content
Log in

Nitrogen-doped graphene quantum dot–based sensing platform for metabolite detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel fluorescent sensing platform based on nitrogen-doped graphene quantum dots (N-GQDs) is presented, which is able to detect various metabolites (cholesterol, glucose, lactate, and xanthine) rapidly, sensitively, and selectively. Hg2+ can attach on the surface of N-GQDs, leading to the quenching of N-GQD fluorescence. In the presence of cysteine (Cys), Hg2+ is released from N-GQDs and associates with Cys. Then, the fluorescence of N-GQDs is recovered. Hydrogen peroxide, resulting from the enzymatic oxidation of metabolites, can convert two molecules of Cys into one molecule of cystine, which cannot bind with Hg2+. So, the fluorescence of N-GQDs quenched again. For cholesterol, glucose, lactate, and xanthine, the limits of detection are 0.035 μmol/L, 0.025 μmol/L, 0.07 μmol/L, and 0.04 μmol/L, respectively, and the linear ranges are 1–12 μmol/L, 0.06–3 μmol/L, 0.2–70 μmol/L, and 0.12–17 μmol/L, respectively. The presented method was applied to quantify metabolites in human blood samples with satisfactory results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghoreishizadeh SS, Carrara S, Micheli GD (2011) Circuit design for human metabolites biochip. In: 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS): 10–12 Nov. 2011. 460–463

  2. Vaidyanathan S, Goodacre R (2007) Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass spectrometry with 9-aminoacridine as the matrix. Rapid Commun Mass Spectrom 21(13):2072–2078

    Article  CAS  Google Scholar 

  3. Ma Z, Wu T, Li P, Liu M, Huang S, Li H, Zhang Y, Yao S (2019) A dual (colorimetric and fluorometric) detection scheme for glutathione and silver (I) based on the oxidase mimicking activity of MnO2 nanosheets. Microchim Acta 186(8):498

    Article  Google Scholar 

  4. Cai X, Gao X, Wang L, Wu Q, Lin X (2013) A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensors Actuators B Chem 181:575–583

    Article  CAS  Google Scholar 

  5. Nantaphol S, Chailapakul O, Siangproh W (2015) Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sensors Actuators B Chem 207:193–198

    Article  CAS  Google Scholar 

  6. Pu W, Zhao H, Wu L, Zhao X (2015) A colorimetric method for the determination of xanthine based on the aggregation of gold nanoparticles. Microchim Acta 182(1–2):395–400

    Article  CAS  Google Scholar 

  7. Umar A, Ahmad R, Hwang SW, Kim SH, Al-Hajry A, Hahn YB (2014) Development of highly sensitive and selective cholesterol biosensor based on cholesterol oxidase co-immobilized with α-Fe2O3 micro-pine shaped hierarchical structures. Electrochim Acta 135:396–403

    Article  CAS  Google Scholar 

  8. Amiri-Aref M, Raoof JB, Ojani R (2014) A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sensors Actuators B Chem 192:634–641

    Article  CAS  Google Scholar 

  9. Rassas I, Braiek M, Bonhomme A, Bessueille F, Raffin G, Majdoub H, Jaffrezic-Renault N (2019) Highly sensitive voltammetric glucose biosensor based on glucose oxidase encapsulated in a chitosan/kappa-carrageenan/gold nanoparticle bionanocomposite. Sensors 19(1)

  10. Ricardo Romero M, Ahumada F, Garay F, Baruzzi AM (2010) Amperometric biosensor for direct blood lactate detection. Anal Chem 82(13):5568–5572

    Article  Google Scholar 

  11. Atchudan R, Muthuchamy N, Edison TNJI, Perumal S, Vinodh R, Park KH, Lee YR (2019) An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens Bioelectron 126:160–169

    Article  CAS  Google Scholar 

  12. Parpinello GP, Versari A (2000) A simple high-performance liquid chromatography method for the analysis of glucose, glycerol, and methanol in a bioprocess. J Chromatogr Sci 38(6):259–261

    Article  CAS  Google Scholar 

  13. Daneshfar A, Khezeli T, Lotfi HJ (2009) Determination of cholesterol in food samples using dispersive liquid-liquid microextraction followed by HPLC-UV. J Chromatogr B Anal Technol Biomed Life Sci 877(4):456–460

    Article  CAS  Google Scholar 

  14. Biagi S, Ghimenti S, Onor M, Bramanti E (2012) Simultaneous determination of lactate and pyruvate in human sweat using reversed-phase high-performance liquid chromatography: a noninvasive approach. Biomed Chromatogr 26(11):1408–1415

    Article  CAS  Google Scholar 

  15. Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W (2009) Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res 8(10):4844–4850

    Article  CAS  Google Scholar 

  16. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  CAS  Google Scholar 

  17. Liu J, Chen Y, Wang W, Feng J, Liang M, Ma S, Chen X (2016) “Switch-on” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe. J Agric Food Chem 64(1):371–380

    Article  Google Scholar 

  18. Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R, Yang B (2012) Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv 2(7):2717–2720

    Article  CAS  Google Scholar 

  19. Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6(1):400–409

    Article  CAS  Google Scholar 

  20. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434

    Article  CAS  Google Scholar 

  21. Zhuo S, Shao M, Lee S-T (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6(2):1059–1064

    Article  CAS  Google Scholar 

  22. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960–9963

    Article  CAS  Google Scholar 

  23. Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K (2009) Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat Mater 8(5):421–426

    Article  CAS  Google Scholar 

  24. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134(1):15–18

    Article  CAS  Google Scholar 

  25. Moniruzzaman M, Kim J (2019) N-doped carbon dots with tunable emission for multifaceted application: solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting. Sensors Actuators B Chem 295:12–21

    Article  CAS  Google Scholar 

  26. Ganganboina AB, Dutta Chowdhury A, Doong R (2017) N-doped graphene quantum dots decorated V2O5 nanosheet for fluorescence turn off-on detection of cysteine. ACS Appl Mater Interfaces:acsami.7b15120

  27. Wu Z, Li W, Chen J, Yu C (2014) A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538–543

    Article  CAS  Google Scholar 

  28. Zhou L, Lin Y, Huang Z, Ren J, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48(8):1147–1149

    Article  CAS  Google Scholar 

  29. Li L, Wang C, Liu K, Wang Y, Liu K, Lin Y (2015) Hexagonal cobalt oxyhydroxide–carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. 87(6):3404–3411

  30. Ma Z, Sun Y, Xie J, Li P, Lu Q, Liu M, Yin P, Li H, Zhang Y, Yao S (2020) Facile preparation of MnO2 quantum dots with enhanced fluorescence via microenvironment engineering with the assistance of some reductive biomolecules. ACS Appl Mater Interfaces 12(13):15919–15927

    Article  CAS  Google Scholar 

  31. Shi B, Zhang L, Lan C, Zhao J, Su Y, Zhao S (2015) One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury (II) ions. Talanta 142:131–139

    Article  CAS  Google Scholar 

  32. Barroso J, Diez-Buitrago B, Saa L, Moller M, Briz N, Pavlov V (2018) Specific bioanalytical optical and photoelectrochemical assays for detection of methanol in alcoholic beverages. Biosens Bioelectron 101:116–122

    Article  CAS  Google Scholar 

  33. Chen S, Chen X, Xia T, Ma Q (2016) A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots. Biosens Bioelectron 85:903–908

    Article  CAS  Google Scholar 

  34. Ian BW (2017) Oxford handbook of clinical medicine, Tenth edn. GB, Oup Oxford

    Google Scholar 

  35. Liu Y, Tang X, Deng M, Cao Y, Li Y, Zheng H, Li F, Yan F, Lan T, Shi L, Gao L, Huang L, Zhu T, Lin H, Bai Y, Qu D, Huang X, Qiu F (2019) Nitrogen doped graphene quantum dots as a fluorescent probe for mercury (II) ions. Microchim Acta 186(3):140

    Article  Google Scholar 

  36. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461–7467

    Article  CAS  Google Scholar 

  37. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv Mater 24(15):2037–2041

    Article  CAS  Google Scholar 

  38. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219–225

    Article  CAS  Google Scholar 

  39. Li Z, Wang Y, Ni Y, Kokot S (2015) A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sensors Actuators B Chem 207:490–497

    Article  CAS  Google Scholar 

  40. Chai F, Wang T, Li L, Liu H, Zhang L, Su Z, Wang C (2010) Fluorescent gold nanoprobes for the sensitive and selective detection for Hg2+. Nanoscale Res Lett 5(11):1856–1860

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 21775052 and No. 21575048) and the Science and Technology Development Project of Jilin province, China (No. 20180414013GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguang Su.

Ethics declarations

All experiments were performed in compliance with the relevant laws and institutional guidelines, and the writing of informed consent for all samples was obtained from human subjects.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Su, X. Nitrogen-doped graphene quantum dot–based sensing platform for metabolite detection. Microchim Acta 187, 532 (2020). https://doi.org/10.1007/s00604-020-04484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04484-4

Keywords

Navigation