Skip to main content
Log in

Synthesis and Characterization of New Mesoporous Polyurethane-Nitrogen Doped Carbon Dot Nanocomposites: Ultrafast, Highly Selective and Sensitive Turn-off Fluorescent Sensors for Fe3+ Ions

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new fluorescent mesoporous polyurethane (PU) (9) was synthesized by reaction between 2,2′-(methylenebis(4,1-phenylene))bis(5-isocyanatoisoindoline-1,3-dione) (Diisocyanate) (5) and 4,4′,4″-((1,3,5-triazine-2,4,6-triyl)tris (azanediyl))triphenol (Triol, TO) (8) (molar ratio 3:2). PU was characterized by using FT-IR, 1H-NMR, XRD, UV-Vis, TGA, Nitrogen adsorption-desorption isotherm, BET, FE-SEM and Photoluminescence (PL) analyses. To the best of our knowledge, this is the first time that a fluorescent polyurethane has been made without the use of commercial fluorescent materials. PU has high fluorescent intensity and it is ultrafast (about few seconds), highly selective and sensitive turn-off fluorescent sensor for Fe3+ ions. This chemosensor exhibited a wide concentration range of (10–250)×10−6 M Fe3+ with quenching efficiency (η) 97.50%. Limit of detection (LOD), limit of quantification (LOQ) and quenching constant (Ksv) values were calculated 10.10×10−6 M, 30.60×10−6 M and 6919.31 M−1, respectively. Nitrogen doped carbon dots (N-doped CDs) as fluorescent nanoparticles and with the aim of improving Fe3+ detecting were synthesized by microwave-assisted and using citric acid monohydrate (10) and ethylenediamine (11) as carbon and nitrogen sources, respectively. Fluorescent nanocomposites (FNCs) were prepared by using casting and in-situ methods. In both methods, two nanocomposites containing 5 and 10%w of N-doped CDs were prepared. FNCs were characterized by using FT-IR, UV-Vis, XRD, TGA, Nitrogen adsorption-desorption isotherm, BET, FE-SEM and PL analyses. All nanocomposites showed better thermal property and sensitivity and lower LOD values in lower concentration of Fe3+ related to PU. Among them, FNC10in exhibited the best results as η, LOD, LOQ, Ksv reached 99.80%, 1.15×10−6 M, 3.48×10−6 M and 53,551.48 M−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Scheme 4
Fig. 5
Scheme 5
Scheme 6
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24. https://doi.org/10.7831/ras.3.1

    Article  Google Scholar 

  2. Su B-L, Moniotte N, Nivarlet N, Chen L-H, Fu Z-Y, Desmet J, Li J (2011) Fl–DFO molecules@mesoporous silica materials: highly sensitive and selective nanosensor for dosing with iron ions. J Colloid Interface Sci 358(1):136–145. https://doi.org/10.1016/j.jcis.2011.02.050

    Article  CAS  PubMed  Google Scholar 

  3. Dang S, Ma E, Sun Z-M, Zhang H (2012) A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. J Mater Chem 22(33):16920–16926. https://doi.org/10.1039/C2JM32661B

    Article  CAS  Google Scholar 

  4. Chen X, Zhao Q, Zou W, Qu Q, Wang F (2017) A colorimetric Fe3+ sensor based on an anionic poly(3,4-propylenedioxythiophene) derivative. Sensors Actuators B Chem 244:891–896. https://doi.org/10.1016/j.snb.2017.01.027

    Article  CAS  Google Scholar 

  5. Davoodi S, Jamshidi-Naeini Y, Esmaeili S, Sohrabvandi S, Mortazavian AM (2016) The dual nature of iron in relation to cancer: a review. Iran J Cancer Prevent 9(6):e5494. https://doi.org/10.17795/ijcp-5494

    Article  Google Scholar 

  6. Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutation Res/Fundament Molec Mechan Mutagen 533(1–2):153–171. https://doi.org/10.1016/j.mrfmmm.2003.08.023

    Article  CAS  Google Scholar 

  7. Simcox JA, McClain DA (2013) Iron and diabetes risk. Cell Metab 17(3):329–341. https://doi.org/10.1016/j.cmet.2013.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88(1):7–15. https://doi.org/10.1007/s12185-008-0120-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berg D, Youdim M (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17(1):5–17. https://doi.org/10.1097/01.rmr.0000245461.90406.ad

    Article  PubMed  Google Scholar 

  10. Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102(3):783–788. https://doi.org/10.1182/blood-2003-03-0672

    Article  CAS  PubMed  Google Scholar 

  11. Gangaidzo IT, Moyo VM, Mvundura E, Aggrey G, Murphree NL, Khumalo H, Saungweme T, Kasvosve I, Gomo Z, Rouault T, Boelaert JR, Gordeuk VR (2001) Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis 184(7):936–939. https://doi.org/10.1086/323203

    Article  CAS  PubMed  Google Scholar 

  12. Khan FA, Fisher MA, Khakoo RA (2007) Association of hemochromatosis with infectious diseases: expanding spectrum. Int J Infect Dis 11(6):482–487. https://doi.org/10.1016/j.ijid.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  13. Collins HL (2003) The role of iron in infections with intracellular bacteria. Immunol Lett 85(2):193–195. https://doi.org/10.1016/S0165-2478(02)00229-8

    Article  CAS  PubMed  Google Scholar 

  14. Spolaor A, Vallelonga P, Gabrieli J, Cozzi G, Boutron C, Barbante C (2011) Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J Anal At Spectrom 27(2):310–317. https://doi.org/10.1039/C1JA10276A

    Article  Google Scholar 

  15. Shamspur T, Sheikhshoaie I, Mashhadizadeh M (2005) Flame atomic absorption spectroscopy (FAAS) determination of iron(III) after preconcentration on to modified analcime zeolite with 5-((4-nitrophenylazo)-N-(2′,4′-dimethoxyphenyl))salicylaldimine by column method. J Anal At Spectrom 20(5):476–478. https://doi.org/10.1039/B416097E

    Article  CAS  Google Scholar 

  16. van den Berg CMG (2006) Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal Chem 78(1):156–163. https://doi.org/10.1021/ac051441+

    Article  CAS  PubMed  Google Scholar 

  17. Hill JO, Korce S (1989) A thermometric titrimetry study of Fe3+/SCN and Ag+/SCN systems. Thermochim Acta 154(1):49–55. https://doi.org/10.1016/0040-6031(89)87117-5

    Article  CAS  Google Scholar 

  18. Memon SS, Nafady A, Solangi AR, Al-Enizi AM, Sirajuddin SMR, Sherazi S, Memon S, Arain M, Abro MI, Khattak MI (2018) Sensitive and selective aggregation based colorimetric sensing of Fe3+ via interaction with acetyl salicylic acid derived gold nanoparticles. Sensors Actuators B Chem 259:1006–1012. https://doi.org/10.1016/j.snb.2017.12.162

    Article  CAS  Google Scholar 

  19. Zhang P, Xue Z, Luo D, Yu W, Guo Z, Wang T (2014) Dual-peak electrogenerated chemiluminescence of carbon dots for iron ions detection. Anal Chem 86(12):5620–5623. https://doi.org/10.1021/ac5011734

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Ning X, Qian Y, Pu G, Wang Y, Zhang X, Wang H, Chen J, Shan D, Lu X (2018) Porphyrin nanosphere–graphene oxide composite for ehanced electrochemiluminescence and sensitive detection of Fe3+ in human serum. Sensors Actuators B Chem 257:331–339. https://doi.org/10.1016/j.snb.2017.10.122

    Article  CAS  Google Scholar 

  21. Oh J-W, Kim T, Yoo S, Lee Y, Lee Y, Kim H, Kim J, Kim J (2013) Multisignaling metal sensor: Optical, electrochemical, and electrochemiluminescent responses of cruciform-shaped alkynylpyrene for selective recognition of Fe3+. Sensors Actuators B Chem 177:813–817. https://doi.org/10.1016/j.snb.2012.11.066

    Article  CAS  Google Scholar 

  22. Kime M-B, Makgoale D (2016) Characterization of copper–cobalt ores and quantification of Cu2+, Co2+, Co3+, and Fe3+ in aqueous leachates using UV/Visible spectrophotometry. Chem Eng Commun 203(12):1648–1655. https://doi.org/10.1080/00986445.2016.1230102

    Article  CAS  Google Scholar 

  23. Akram D, Elhaty IA, AlNeyadi SS (2020) Synthesis and antibacterial activity of rhodanine-based azo dyes and their use as spectrophotometric chemosensor for Fe3+ ions. Chemosensors 8(1):16. https://doi.org/10.3390/chemosensors8010016

    Article  CAS  Google Scholar 

  24. Feng X, Li Y, He X, Liu H, Zhao Z, Kwok RTK, Elsegood MRJ, Lam JWY, Tang B (2018) A substitution-dependent light-up fluorescence probe for selectively detecting Fe3+ ions and its cell imaging application. Adv Funct Mater 28(35):1802833–1802840. https://doi.org/10.1002/adfm.201802833

    Article  CAS  Google Scholar 

  25. Ma H, Li F, Li P, Wang H, Zhang M, Zhang G, Baumgarten M, Müllen K (2016) A dendrimer-based electropolymerized microporous film: multifunctional, reversible, and highly sensitive fluorescent probe. Adv Funct Mater 26(12):2025–2031. https://doi.org/10.1002/adfm.201504692

    Article  CAS  Google Scholar 

  26. Selvaraj M, Rajalakshmi K, Nam Y-S, Lee Y, Song J-W, Lee H-J, Lee K-B (2019) On-off-on relay fluorescence recognition of ferric and fluoride ions based on indicator displacement in living cells. Anal Chim Acta 1066:112–120. https://doi.org/10.1016/j.aca.2019.03.040

    Article  CAS  PubMed  Google Scholar 

  27. Shylaja A, Rubina S, Roja S, Kumar R (2019) Novel blue emissive dimethylfuran tethered 2-aminopyridine-3-carbonitrile as dual responsive fluorescent chemosensor for Fe3+ and picric acid in nanomolar detection limit. Dyes Pigments 174:108062. https://doi.org/10.1016/j.dyepig.2019.108062

    Article  CAS  Google Scholar 

  28. Li S, Li Y, Cao J, Zhu J, Fan L, Li X (2014) Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem 86(20):10201–10207. https://doi.org/10.1021/ac503183y

    Article  CAS  PubMed  Google Scholar 

  29. Sadak A, Karakuş E (2020) Triazatruxene–rhodamine-based ratiometric fluorescent chemosensor for the sensitive, rapid detection of trivalent metal ions: Aluminium (III), iron (III) and chromium (III). J Fluoresc 30(1):213–220. https://doi.org/10.1007/s10895-020-02491-5

    Article  CAS  PubMed  Google Scholar 

  30. Xu H, Gao J, Qian X, Wang J, He H, Cui Y, Yang Y, Wang Z, Qian G (2016) Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J Mater Chem A 4(28):10900–10905. https://doi.org/10.1039/C6TA03065C

    Article  CAS  Google Scholar 

  31. Lai T, Zheng E, Chen L, Wang X, Kong L, You C, Ruan Y, Weng X (2013) Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III). Nanoscale 5(17):8015–8021. https://doi.org/10.1039/C3NR02014B

    Article  CAS  PubMed  Google Scholar 

  32. Desai ML, Basu H, Saha S, Singhal R, Kailasa S (2019) Investigation of silicon doping into carbon dots for improved fluorescence properties for selective detection of Fe3+ ion. Opt Mater 96:109374. https://doi.org/10.1016/j.optmat.2019.109374

    Article  CAS  Google Scholar 

  33. Wu F, Yang M, Zhang H, Zhu S, Zhu X, Wang K (2018) Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Opt Mater 77:258–263. https://doi.org/10.1016/j.optmat.2018.01.048

    Article  CAS  Google Scholar 

  34. Ge S, He J, Ma C, Liu J, Xi F, Dong X (2019) One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta 199:581–589. https://doi.org/10.1016/j.talanta.2019.02.098

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Tian Y, Ding L, Zhao B, He X, Song B, Liu S (2017) Benzimidazole derivative fluorescent probe for cascade recognition of phosphate and iron ions in aqueous medium and its logic gate behavior. RSC Adv 7(28):16916–16923. https://doi.org/10.1039/C7RA00846E

    Article  CAS  Google Scholar 

  36. Sutariya PG, Pandya A, Lodha A, Menon SK (2014) A pyrenyl linked calix[4]arene fluorescence probe for recognition of ferric and phosphate ions. RSC Adv 4(66):34922–34926. https://doi.org/10.1039/C4RA04546G

    Article  CAS  Google Scholar 

  37. Huang H, Liu F, Chen S, Zhao Q, Liao B, Long Y, Zeng Y, Xia X (2013) Enhanced fluorescence of chitosan based on size change of micelles and application to directly selective detecting Fe3+ in humanserum. Biosens Bioelectron 42:539–544. https://doi.org/10.1016/j.bios.2012.10.098

    Article  CAS  PubMed  Google Scholar 

  38. Du J-L, Zhang X-Y, Li C-P, Gao J-P, Hou J-X, Jing X, Mu Y-J, Li L-J (2018) A bi-functional luminescent Zn(II)-MOF for detection of nitroaromatic explosives and Fe3+ ions. Sensors Actuators B Chem 257:207–213. https://doi.org/10.1016/j.snb.2017.10.159

    Article  CAS  Google Scholar 

  39. Yin X, Li S, Liao B (2019) Water-stable Ln-exclusive metal-organic framework for highly selective sensing of Fe3+ ions. Dyes Pigments 174:108035. https://doi.org/10.1016/j.dyepig.2019.108035

    Article  CAS  Google Scholar 

  40. Li P-C, Zhang L, Yang M, Zhang K-L (2018) A novel luminescent 1D→2D polyrotaxane Zn(II)-organic framework showing dual responsive fluorescence sensing for Fe3+ cation and Cr(VI) anions in aqueous medium. J Lumin 207:351–360. https://doi.org/10.1016/j.jlumin.2018.11.039

    Article  CAS  Google Scholar 

  41. Li L, Shen S, Ai W, Song S, Bai Y, Liu H (2018) Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution. Sensors Actuators B Chem 267:542–548. https://doi.org/10.1016/j.snb.2018.04.064

    Article  CAS  Google Scholar 

  42. Chen C-H, Wang X-S, Li L, Huang Y-B, Cao R (2018) Highly selective sensing of Fe3+ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Trans 47(10):3452–3458. https://doi.org/10.1039/C8DT00088C

    Article  CAS  PubMed  Google Scholar 

  43. Liu W, Xu O, Li J, Zhu X (2020) Synthesis of poly-amino acid ionic liquid up-conversion fluorescent probe and its application in Fe(II)/Fe(III) speciation analysis. J Fluoresc 30(2):309–316. https://doi.org/10.1007/s10895-020-02499-x

    Article  CAS  PubMed  Google Scholar 

  44. Cui X, Si Z, Li Y, Duan Q (2019) Synthesis of telechelic PNIPAM ended with 9,10-dihydroacridine group as a recyclable and specific Fe3+ detection fluorescent sensor. Dyes Pigments 173:107873. https://doi.org/10.1016/j.dyepig.2019.107873

    Article  CAS  Google Scholar 

  45. Li P, Zhang M, Sun X, Guan S, Zhang G, Baumgarten M, Müllen K (2016) A dendrimer-based highly sensitive and selective fluorescence-quenching sensor for Fe3+ both in solution and as film. Biosens Bioelectron 85:785–791. https://doi.org/10.1016/j.bios.2016.05.046

    Article  CAS  PubMed  Google Scholar 

  46. Gholami J, Manteghian M, Badiei A, Ueda H, Javanbakht M (2016) N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching. Luminescence 31(1):229–235. https://doi.org/10.1002/bio.2950

    Article  CAS  PubMed  Google Scholar 

  47. He L, Li J, Xin JH (2015) A novel graphene oxide-based fluorescent nanosensor for selective detection of Fe3+ with a wide linear concentration and its application in logic gate. Biosens Bioelectron 70:69–73. https://doi.org/10.1016/j.bios.2015.01.075

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Q, Chen S, Zhang L, Huang H, Zeng Y, Liu F (2014) Multiplex sensor for detection of different metal ions based on on–off of fluorescent gold nanoclusters. Anal Chim Acta 852:236–243. https://doi.org/10.1016/j.aca.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  49. Mu X, Qi L, Qiao J, Ma H (2014) One-pot synthesis of tyrosine-stabilized fluorescent gold nanoclusters and their application as turn-on sensors for Al3+ ions and turn-off sensors for Fe3+ ions. Anal Methods 6(16):6445–6451. https://doi.org/10.1039/C4AY01137F

    Article  CAS  Google Scholar 

  50. Cao H, Chen Z, Zheng H, Huang Y (2014) Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron 62:189–195. https://doi.org/10.1016/j.bios.2014.06.049

    Article  CAS  PubMed  Google Scholar 

  51. Huang H, Li H, Feng J-J, Wang A-J (2016) One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe3+. Sensors Actuators B Chem 223:550–556. https://doi.org/10.1016/j.snb.2015.09.136

    Article  CAS  Google Scholar 

  52. Bogale R, Chen Y, Ye J, Yang Y, Rauf A, Duan L, Tian P, Ning G (2017) Highly selective and sensitive detection of 4-nitrophenol and Fe3+ ion based on a luminescent layered terbium (III) coordination polymer. Sensors Actuators B Chem 245:171–178. https://doi.org/10.1016/j.snb.2017.01.177

    Article  CAS  Google Scholar 

  53. Li X, An J, Zhang H, Liu J, Li Y, Du G, Wu X, Fei L, Lacoste JD, Cai Z, Liu Y, Huo J, Ding B (2019) Cluster-based CaII, MgII and CdII coordination polymers based on amino-functionalized tri-phenyl tetra-carboxylate: Bi-functional photo-luminescent sensing for Fe3+ and antibiotics. Dyes Pigments 170:107631. https://doi.org/10.1016/j.dyepig.2019.107631

    Article  CAS  Google Scholar 

  54. Sheng D, Sun F, Yu Y, Wang Y, Lu J, Li Y, Wang S, Dou J, Li D (2019) 1-D multifunctional Ln-CPs: Luminescence probes for Fe3+ and Cr(VI) and uncommon discriminative detection between Cr2O72− and CrO42− of Tb-CP in various media. J Lumin 213:140–150. https://doi.org/10.1016/j.jlumin.2019.05.017

    Article  CAS  Google Scholar 

  55. Song Y, Fan R, Du X, Xing K, Dong Y, Wang P, Yang Y (2016) Dual functional fluorescent sensor for selectively detecting acetone and Fe3+ based on {Cu2N4} substructure bridged Cu(I) coordination polymer. RSC Adv 6(111):110182–110189. https://doi.org/10.1039/C6RA23694D

    Article  CAS  Google Scholar 

  56. Shiravand G, Badiei A, Ziarani G (2017) Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sensors Actuators B Chem 242:244–252. https://doi.org/10.1016/j.snb.2016.11.038

    Article  CAS  Google Scholar 

  57. Tian J, Liu Q, Asiri AM, Sun X, He Y (2015) Ultrathin graphitic C3N4 nanofibers: Hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sensors Actuators B Chem 216:453–460. https://doi.org/10.1016/j.snb.2015.04.075

    Article  CAS  Google Scholar 

  58. Azimi E, Badiei A, Jafari M, Dehkordi A, Ghasemi JB, Ziarani G (2019) Boron-doped graphitic carbon nitride as a novel fluorescent probe for mercury(II) and iron(III): A circuit logic gate mimic. New J Chem 43(30):12087–12093. https://doi.org/10.1039/C9NJ03127H

    Article  Google Scholar 

  59. Guo L, Zeng X, Cao D (2016) Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform: functional group effects. Sensors Actuators B Chem 226:273–278. https://doi.org/10.1016/j.snb.2015.11.108

    Article  CAS  Google Scholar 

  60. Ananthanarayanan A, Wang X, Routh P, Sana B, Lim S, Kim DH, Lim KH, Li J, Chen P (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24(20):3021–3026. https://doi.org/10.1002/adfm.201303441

    Article  CAS  Google Scholar 

  61. Xu F, Shi H, He X, Wang K, He D, La Y, Ye X, Tang J, Shangguan J, Luo L (2015) Masking agent-free and channel-switch-mode simultaneous sensing of Fe3+ and Hg2+ using dual-excitation graphene quantum dots. Analyst 140(12):3925–3928. https://doi.org/10.1039/C5AN00468C

    Article  CAS  PubMed  Google Scholar 

  62. Yarur F, Macairan J-R, Naccache R (2019) Ratiometric detection of heavy metal ions using fluorescent carbon dots. Environment Sci: Nano 6(4):1121–1130. https://doi.org/10.1039/C8EN01418C

    Article  CAS  Google Scholar 

  63. Pang S, Liu S (2020) Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal Chim Acta 1105:155–161. https://doi.org/10.1016/j.aca.2020.01.033

    Article  CAS  PubMed  Google Scholar 

  64. Chen B, Li F, Zou L, Chen D (2018) Intermolecular hydrogen bonding-mediated synthesis of high-quality photoluminescent carbon dots for label-free fluorometric detection of Fe3+ ions. J Colloid Interface Sci 534:381–388. https://doi.org/10.1016/j.jcis.2018.09.050

    Article  CAS  PubMed  Google Scholar 

  65. Khan ZH, Rahman R, Shumaila IS, Zulfequar M (2019) Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe3+. Opt Mater 91:386–395. https://doi.org/10.1016/j.optmat.2019.03.054

    Article  CAS  Google Scholar 

  66. Ying R, Lu H, Xu S (2019) Ion imprinted dual reference ratiometric fluorescence probe for respective and simultaneous detection of Fe3+ and Cu2+. New J Chem 43(16):6404–6410. https://doi.org/10.1039/C9NJ01356C

    Article  CAS  Google Scholar 

  67. Ma J, Yu H, Jiang X, Luo Z, Zheng Y (2018) High sensitivity label-free detection of Fe3+ ion in aqueous solution using fluorescent MoS2 quantum dots. Sensors Actuators B Chem 281:989–997. https://doi.org/10.1016/j.snb.2018.11.039

    Article  CAS  Google Scholar 

  68. Fallah A, Gülcan H, Gazi M (2018) Urolithin B as a Simple, Selective, Fluorescent Probe for Sensing Iron(III) in Semi-Aqueous Solution. J Fluoresc 28(5):1255–1259. https://doi.org/10.1007/s10895-018-2290-8

    Article  CAS  PubMed  Google Scholar 

  69. Puthiyedath T, Bahulayan D (2018) A click derived triazole-coumarin derivative as fluorescence on-off PET based sensor for Ca2+and Fe3+ ions. Sensors Actuators B Chem 272:110–117. https://doi.org/10.1016/j.snb.2018.05.126

    Article  CAS  Google Scholar 

  70. Arockiam J, Ayyanar S (2017) Benzothiazole, pyridine functionalized triphenylamine based fluorophore for solid state fluorescence switching, Fe3+ and picric acid sensing. Sensors Actuators B Chem 242:535–544. https://doi.org/10.1016/j.snb.2016.11.086

    Article  CAS  Google Scholar 

  71. Zhang Z, Li F, He C, Ma H, Feng Y, Zhang Y, Zhang M (2018) Novel Fe3+ fluorescence probe based on the charge-transfer (CT) molecules. Sensors Actuators B Chem 255:1878–1883. https://doi.org/10.1016/j.snb.2017.08.211

    Article  CAS  Google Scholar 

  72. Kumar P, Kumar V, Gupta R (2015) Arene-based fluorescent probes for the selective detection of iron. RSC Adv 5(118):97874–97882. https://doi.org/10.1039/C5RA20760F

    Article  CAS  Google Scholar 

  73. Raj T, Saluja P, Singh N (2015) A new class of pyrene based multifunctional chemosensors for differential sensing of metals in different media: Selective recognition of Zn2+ in organic and Fe3+ in aqueous medium. Sensors Actuators B Chem 206:98–106. https://doi.org/10.1016/j.snb.2014.09.049

    Article  CAS  Google Scholar 

  74. Panja A, Ghosh K (2018) Azo and imine functionalized 2-naphthols: Promising supramolecular gelators for selective detection of Fe3+ and Cu2+, reactive oxygen species and halides. Mater Chem Front 2(10):1866–1875. https://doi.org/10.1039/C8QM00257F

    Article  CAS  Google Scholar 

  75. Panja A, Ghosh K (2018) Cholesterol-based diazine derivative: Selective sensing of Ag+ and Fe3+ ions through gelation and the performance of metallogels in dye and picric acid adsorption from water. Mater Chem Front 2(12):2286–2296. https://doi.org/10.1039/C8QM00433A

    Article  CAS  Google Scholar 

  76. Feng Y, Jiang N, Zhu D, Su Z, Bryce MR (2020) Supramolecular oligourethane gel as a highly selective fluorescent “on–off–on” sensor for ions. J Mater Chem C 8(33):11540–11545. https://doi.org/10.1039/D0TC02381G

    Article  CAS  Google Scholar 

  77. Suresh P, Azath I, Pitchumani K (2010) Naked-eye detection of Fe3+ and Ru3+ in water: Colorimetric and ratiometric sensor based on per-6-amino-β-cyclodextrin/p-nitrophenol. Sensors Actuators B Chem 146(1):273–277. https://doi.org/10.1016/j.snb.2010.02.047

    Article  CAS  Google Scholar 

  78. Hazra C, Mahalingam V (2013) Water dispersible Eu3+-doped NaGd(SO4)2·H2O nanorods for selective Fe3+ sensing applications. RSC Adv 3(24):9197. https://doi.org/10.1039/C3RA41343H

    Article  CAS  Google Scholar 

  79. Chaudhary S, Kumar S, Umar A, Singh J, Rawat M, Mehta SK (2017) Europium-doped gadolinium oxide nanoparticles: A potential photoluminescencent probe for highly selective and sensitive detection of Fe3+ and Cr3+ ions. Sensors Actuators B Chem 243:579–588. https://doi.org/10.1016/j.snb.2016.12.002

    Article  CAS  Google Scholar 

  80. Molaei M (2019) A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 196:456–478. https://doi.org/10.1016/j.talanta.2018.12.042

    Article  CAS  PubMed  Google Scholar 

  81. Lim S, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  PubMed  Google Scholar 

  82. Zhao D, Chung T-S (2018) Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Res 147:43–49. https://doi.org/10.1016/j.watres.2018.09.040

    Article  CAS  PubMed  Google Scholar 

  83. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, Chen X (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86(19):9846–9852. https://doi.org/10.1021/ac502446m

    Article  CAS  PubMed  Google Scholar 

  84. Lu W, Gong X, Nan M, Liu Y, Shuang S, Dong C (2015) Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal Chim Acta 898:116–127. https://doi.org/10.1016/j.aca.2015.09.050

    Article  CAS  PubMed  Google Scholar 

  85. Arul V, Sethuraman M (2018) Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt Mater 78:181–190. https://doi.org/10.1016/j.optmat.2018.02.029

    Article  CAS  Google Scholar 

  86. Yang Z, Li Z, Xu M, Ma Y, Zhang J, Su Y, Gao F, Wei H, Zhang L (2013) Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett 5(4):247–259. https://doi.org/10.5101/nml.v5i4.p247-259

    Article  CAS  Google Scholar 

  87. Xiao L, Shi NB, Chen W, Zhang Q, Zhang E, Lu M (2020) Highly sensitive detection of Fe3+ ions using waterborne polyurethane-carbon dots self-healable fluorescence film. Macromol Mater Eng 305(3):1900810. https://doi.org/10.1002/mame.201900810

    Article  CAS  Google Scholar 

  88. Zhai Y, Zhu Z, Zhu C, Ren J, Wang E, Dong S (2014) Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing. J Mater Chem B 2(40):6995–6999. https://doi.org/10.1039/C4TB01035C

    Article  CAS  PubMed  Google Scholar 

  89. Karak N (2017) Biobased smart polyurethane nanocomposites: From synthesis to applications. Royal Soc Chem. https://doi.org/10.1039/9781788011891

  90. Wang N, Burugapalli K, Song W, Halls J, Moussy F, Ray A, Zheng Y (2013) Electrospun fibro-porous polyurethane coatings for implantable glucose biosensors. Biomaterials 34(4):888–901. https://doi.org/10.1016/j.biomaterials.2012.10.049

    Article  CAS  PubMed  Google Scholar 

  91. Wang X, Ruckenstein E (1993) Preparation of porous polyurethane particles and their use in enzyme immobilization. Biotechnol Prog 9(6):661–665. https://doi.org/10.1021/bp00024a015

    Article  CAS  PubMed  Google Scholar 

  92. Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H (2014) Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour Technol 174:190–197. https://doi.org/10.1016/j.biortech.2014.09.137

    Article  CAS  PubMed  Google Scholar 

  93. Garmendia S, Mantione D, Castro S, Jehanno C, Lezama L, Hedrick JL, Mecerreyes D, Salassa L, Sardon H (2017) Polyurethane based organic macromolecular contrast agents (PU-ORCAs) for magnetic resonance imaging. Polym Chem 8(17):2693–2701. https://doi.org/10.1039/C7PY00166E

    Article  CAS  Google Scholar 

  94. Guan J, Fujimoto KL, Sacks MS, Wagner WR (2005) Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 26(18):3961–3971. https://doi.org/10.1016/j.biomaterials.2004.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dey S, de Amadeu N, Janiak C (2016) Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction. Chem Commun 52(50):7834–7837. https://doi.org/10.1039/C6CC02578A

    Article  CAS  Google Scholar 

  96. Dey S, Dietrich D, Wegner S, Gil-Hernández B, Harmalkar S, de Sousa AN, Janiak C (2018) Palladium nanoparticle-immobilized porous polyurethane material for quick and efficient heterogeneous catalysis of Suzuki-Miyaura cross-coupling reaction at room temperature. ChemistrySelect 3(5):1365–1370. https://doi.org/10.1002/slct.201702083

    Article  CAS  Google Scholar 

  97. Chen J, Yin X, Wang H, Ding Y (2018) Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement. J Clean Prod 188:12–19. https://doi.org/10.1016/j.jclepro.2018.03.297

    Article  CAS  Google Scholar 

  98. Tao C, Han X, Bao J, Chen Q, Huang Y, Xu G (2017) Preparation of waterborne polyurethane with outstanding fluorescence properties and programmable emission intensity. Polym Int 66(6):770–778. https://doi.org/10.1002/pi.5310

    Article  CAS  Google Scholar 

  99. Jiang N, Li G, Che W, Zhu D, Su Z, Bryce MR (2018) Polyurethane derivatives for highly sensitive and selective fluorescence detection of 2,4,6-trinitrophenol (TNP). J Mater Chem C 6(42):11287–11291. https://doi.org/10.1039/C8TC04250K

    Article  CAS  Google Scholar 

  100. Wang K, Lu H, Liu B, Yang J (2018) A high-efficiency and low-cost AEE polyurethane chemo-sensor for Fe3+ and explosives detection. Tetrahedron Lett 59(47):4191–4195. https://doi.org/10.1016/j.tetlet.2018.10.035

    Article  CAS  Google Scholar 

  101. Gogoi S, Kumar M, Mandal BB, Karak N (2015) High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Compos Sci Technol 118:39–46. https://doi.org/10.1016/j.compscitech.2015.08.010

    Article  CAS  Google Scholar 

  102. Bayan R, Karak N (2019) Photoluminescent oxygeneous-graphitic carbon nitride nanodot-incorporated bioderived hyperbranched polyurethane nanocomposite with anticounterfeiting attribute. ACS Omega 4(5):9219–9227. https://doi.org/10.1021/acsomega.9b00891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qiang T, Han M, Wang X (2019) Waterborne polyurethane/carbon quantum dot nanocomposite as a surface coating material exhibiting outstanding luminescent performance. Prog Org Coat 138:105433. https://doi.org/10.1016/j.porgcoat.2019.105433

    Article  CAS  Google Scholar 

  104. Ghosh S, Manna R, Dey S (2019) Polyurethane network using 1-naphthylamine embedded epoxy-based polymer: ferric ion selective fluorescent probe. Polym Bull 76(1):205–213. https://doi.org/10.1007/s00289-018-2374-2

    Article  CAS  Google Scholar 

  105. De B (2019) Carbon dots and their polymeric nanocomposites. In: Karak N (ed) Nanomaterials and polymer nanocomposites. Elsevier, pp 217–260. https://doi.org/10.1016/B978-0-12-814615-6.00007-2

  106. Masayuki Negoro KK (2006) Processes for producing 2,4,6-tris(hydroxyphenyl amino)-1,3,5-triazines and 2,4,6-tris(substituted phenylamino)-1,3,5-triazines US7135567B2

  107. Srinivas K, Srinivas U, Rao JV, Bhanuprakash K, Kishore HK, Murty USN (2005) Synthesis and antibacterial activity of 2,4,6-tri substituted s-triazines. Bioorg Med Chem Lett 15(4):1121–1123. https://doi.org/10.1016/j.bmcl.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  108. Sarwade BD, Mahajan SS (1991) Synthesis and characterization of polyamides containing s-triazine rings in the main chain. J Polym Sci A Polym Chem 29(6):825–829. https://doi.org/10.1002/pola.1991.080290605

    Article  CAS  Google Scholar 

  109. Sanagi MM, Ling SL, Nasir Z, Hermawan D, Ibrahim W, Naim A (2009) Comparison of signal-to-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography. J AOAC Int 92(6):1833–1838. https://doi.org/10.1093/jaoac/92.6.1833

    Article  CAS  PubMed  Google Scholar 

  110. Dutta P, Chakravarty S, Sarma N (2015) Detection of nitroaromatic explosives using π-electron rich luminescent polymeric nanocomposites. RSC Adv 6(5):3680–3689. https://doi.org/10.1039/C5RA20347C

    Article  CAS  Google Scholar 

  111. Zheng S, Yin H, Li Y, Bi F, Gan F (2017) One–step synthesis of L-tryptophan-stabilized dual-emission fluorescent gold nanoclusters and its application for Fe3+ sensing. Sensors Actuators B Chem 242:469–475. https://doi.org/10.1016/j.snb.2016.11.052

    Article  CAS  Google Scholar 

  112. Kaur N, Sharma V, Tiwari P, Saini AK, Mobin SM (2019) “Vigna radiata” based green C-dots: Photo-triggered theranostics, fluorescent sensor for extracellular and intracellular iron (III) and multicolor live cell imaging probe. Sensors Actuators B Chem 291:275–286. https://doi.org/10.1016/j.snb.2019.04.039

    Article  CAS  Google Scholar 

  113. He Y, Feng Z, Shi X, Li S, Liu Y, Zeng G, He H (2019) N- and O-doped carbon dots for rapid and high-throughput dual detection of trace amounts of iron in water and organic phases. J Fluoresc 29(1):137–144. https://doi.org/10.1007/s10895-018-2321-5

    Article  CAS  PubMed  Google Scholar 

  114. Khan W, Wang D, Zhang W, Tang Z, Ma X, Ding X, Du S, Wang Y (2017) High quantum yield green-emitting carbon dots for Fe(III) detection, biocompatible fluorescent ink and cellular imaging. Sci Rep 7(1):14866. https://doi.org/10.1038/s41598-017-15054-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of this work from the Research Council of Arak University.

Author information

Authors and Affiliations

Authors

Contributions

Saber Nanbedeh (Conceptualization, Methodology, Investigation, Writing - Original Draft, Reviewing and Editing).

Khalil Faghihi (Supervision, Project administration, Reviewing and Editing).

Corresponding author

Correspondence to Khalil Faghihi.

Ethics declarations

Competing Interests

We have no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanbedeh, S., Faghihi, K. Synthesis and Characterization of New Mesoporous Polyurethane-Nitrogen Doped Carbon Dot Nanocomposites: Ultrafast, Highly Selective and Sensitive Turn-off Fluorescent Sensors for Fe3+ Ions. J Fluoresc 31, 517–539 (2021). https://doi.org/10.1007/s10895-020-02680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02680-2

Keywords

Navigation