Skip to main content
Log in

Novel Rhodafluors: Synthesis, Photophysical, pH and TD-DFT Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An efficient protocol for the synthesis of new rhodol derivatives has been developed. The synthesis involves condensation of 2-hydroxy benzophenone derivatives with 1, 3-dihydroxy benzene derivatives in solvents such as ionic liquid (N-methyl-2-pyrrolidonium hydrogen sulfate) and methane sulphonic acid. Both ionic liquid and methane sulphonic acid were found to be promising self-catalyzed solvents to bring out the conversion to form desired rhodols in excellent yields. In N-methyl-2-pyrrolidonium hydrogen sulfate reaction proceeds faster compared to methane sulphonic acid. The new fluorophores are investigated for their photophysical properties in various microenvironments and systematically characterized by means of density functional theory and time dependent density functional theory. Photophysical properties of the new rhodafluors found sensitive towards change in the pH of media and thus can be used as efficient pH sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burdette SC, Lippard SJ (2002) The Rhodafluor family. An initial study of potential Ratiometric fluorescent sensors for Zn 2 +. Inorg Chem 41:6816–6823. doi:10.1021/ic026048q

    Article  CAS  PubMed  Google Scholar 

  2. Whitaker JE, Haugland RP, Ryan D, et al. (1992) Fluorescent rhodol derivatives: versatile, photostable labels and tracers. Anal Biochem 207:267–279. doi:10.1016/0003-2697(92)90011-U

    Article  CAS  PubMed  Google Scholar 

  3. Peng, T (2009) Rhodol fluorophores and fluorescent probes for the detection and imaging of reactive oxygen species. doi:10.5353/th_b4175792

  4. Peng T, Yang D (2010) Construction of a library of rhodol fluorophores for developing new fluorescent probes. Org Lett 12:496–499. doi:10.1021/ol902706b

    Article  CAS  PubMed  Google Scholar 

  5. Sauers RR, Husain SN, Piechowski AP, Bird GR (1987) Shaping the absorption and fluorescence bands of a class of efficient, photoactive chromophores: synthesis and properties of some new 3H-xanthen-3. Dyes Pigments 8:35–53. doi:10.1016/0143-7208(87)85004-0

    Article  CAS  Google Scholar 

  6. Yang BH, Buchwald SL (1999) Palladium-catalyzed amination of aryl halides and sulfonates. J Organomet Chem 576:125–146

    Article  CAS  Google Scholar 

  7. Wolfe, JP, Wagaw, S, Buchwald, SL (1998) Rational development of practical catalysts for aromatic carbon - nitrogen bond formation. 31:805–818

  8. Clark MA, Duffy K, Tibrewala J, Lippard SJ (2003) Synthesis and metal-binding properties of chelating fluorescein derivatives. Org Lett 5:2051–2054. doi:10.1021/ol0344570

    Article  CAS  PubMed  Google Scholar 

  9. Smith GA, Metcalfe JC, Clarke SD (1993) The design and properties of a series of calcium indicators which shift from rhodamine-like to fluorescein-like fluorescence on binding calcium. J Chem Soc Perkin Trans 2:1195. doi:10.1039/p29930001195

    Article  Google Scholar 

  10. Lee LG, Berry GM, Chen CH (1989) Vita blue: a new 633-nm excitable fluorescent dye for cell analysis. Cytometry 10:151–164. doi:10.1002/cyto.990100206

    Article  PubMed  Google Scholar 

  11. Poronik YM, Clermont G, Blanchard-Desce M, Gryko DT (2013) Nonlinear optical chemosensor for sodium ion based on rhodol chromophore. J Org Chem 78:11721–11732. doi:10.1021/jo401653t

    Article  CAS  PubMed  Google Scholar 

  12. Yamada C, Sasaki K, Matsumura S, Toshima K (2007) Aryl C-glycosylation using an ionic liquid containing a protic acid. Tetrahedron Lett 48:4223–4227

    Article  CAS  Google Scholar 

  13. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. Chemphyschem 5:1106–1120. doi:10.1002/cphc.200301017

    Article  CAS  PubMed  Google Scholar 

  14. Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report. Pure Appl Chem 83:2213–2228. doi:10.1351/PAC-REP-10-09-31

    Article  CAS  Google Scholar 

  15. Thorat KG, Ray AK, Sekar N (2016) Modulating TICT to ICT characteristics of acid switchable red emitting boradiazaindacene chromophores: Perspectives from synthesis, photophysical, hyperpolarizability and TD-DFT studies. Dye Pigment. doi:10.1016/j.dyepig.2016.08.049

    Google Scholar 

  16. Chaudhari AS, Parab YS, Patil V, et al. (2012) Intrinsic catalytic activity of Bronsted acid ionic liquids for the synthesis of triphenylmethane and phthalein under microwave irradiation. RSC Adv 2:12112. doi:10.1039/c2ra21803h

    Article  CAS  Google Scholar 

  17. Liu Q-H, Liu J, Guo J-C, et al. (2009) Preparation of polystyrene fluorescent microspheres based on some fluorescent labels. J Mater Chem 19:2018. doi:10.1039/b816963b

    Article  CAS  Google Scholar 

  18. Thorat KG, Kamble PS, Ray AK, Sekar N (2015) Novel Pyrromethene dyes with N-ethyl carbazole at meso position: comprehensive photophysical, lasing, photostability and TD-DFT study. Phys Chem Chem Phys 17:17221–17236. doi:10.1039/C5CP01741F

    Article  CAS  PubMed  Google Scholar 

  19. Frisch, MJ, Trucks, GW, Schlegel, HB, et al. (2009) Gaussian 09 C.01. Gaussian Inc., Wallingford CT

  20. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346. doi:10.1063/1.469408

    Article  CAS  Google Scholar 

  21. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Hehre WJ (1976) Ab initio molecular orbital theory. Acc Chem Res 9:399–406. doi:10.1021/ar50107a003

    Article  CAS  Google Scholar 

  24. Gabe Y, Ueno T, Urano Y, et al. (2006) Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Anal Bioanal Chem 386:621–626. doi:10.1007/s00216-006-0587-y

    Article  CAS  PubMed  Google Scholar 

  25. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433. doi:10.1063/1.1508368

    Article  CAS  Google Scholar 

  26. Scalmani G, Frisch MJ, Mennucci B, et al. (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:94107. doi:10.1063/1.2173258

    Article  PubMed  Google Scholar 

  27. Thorat KG, Bhakhoa H, Ramasami P, Sekar N (2015) NIR-emitting Boradiazaindacene fluorophores -TD-DFT studies on electronic structure and Photophysical properties. J Fluoresc 25:69–78. doi:10.1007/s10895-014-1481-1

    Article  CAS  PubMed  Google Scholar 

  28. Thorat KG, Kamble P, Mallah R, et al. (2015) Congeners of Pyrromethene-567 dye: perspectives from synthesis, photophysics, photostability, laser and TD-DFT theory. J Org Chem 80:6152–6164. doi:10.1021/acs.joc.5b00654

    Article  CAS  PubMed  Google Scholar 

  29. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. doi:10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  30. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  31. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. doi:10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, KGT, is thankful to the Council of Scientific and Insdustrial Research (CSIR), India for Junior and Senior Research Fellowships, and RM is thankful to University Grant Comission for Junior and Senior Research Fellowships under SAP programme. SP is thankful to TEQIP (Technical Education Quality Improvement Program) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Additional information

Supriya S. Patil and Kishor G. Thorat contributed equally equally to this work.

Electronic supplementary material

[Supporting Information contains optimized geometry parameter table, absorption emission spectra, 1H, 13C and LCMS spectra, etc.]

ESM 1

(DOCX 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.S., Thorat, K.G., Mallah, R. et al. Novel Rhodafluors: Synthesis, Photophysical, pH and TD-DFT Studies. J Fluoresc 26, 2187–2197 (2016). https://doi.org/10.1007/s10895-016-1915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1915-z

Keywords

Navigation